IDEAS home Printed from https://ideas.repec.org/a/inm/oropre/v57y2009i5p1189-1205.html
   My bibliography  Save this article

Staffing Many-Server Queues with Impatient Customers: Constraint Satisfaction in Call Centers

Author

Listed:
  • Avishai Mandelbaum

    (Faculty of Industrial Engineering and Management, Technion, Haifa 32000, Israel)

  • Sergey Zeltyn

    (IBM Research Lab, Haifa 31905, Israel)

Abstract

Motivated by call center practice, we study asymptotically optimal staffing of many-server queues with abandonment. A call center is modelled as an M/M/ n + G queue, which is characterized by Poisson arrivals, exponential service times, n servers, and generally distributed patience times of customers. Our asymptotic analysis is performed as the arrival rate, and hence the number of servers n , increases indefinitely. We consider a constraint satisfaction problem, where one chooses the minimal staffing level n that adheres to a given cost constraint. The cost can incorporate the fraction abandoning, average wait, and tail probabilities of wait. Depending on the cost, several operational regimes arise as asymptotically optimal: Efficiency-Driven (ED), Quality and Efficiency-Driven (QED), and also a new ED + QED operational regime that enables QED tuning of the ED regime. Numerical experiments demonstrate that, over a wide range of system parameters, our approximations provide useful insight as well as excellent fit to exact optimal solutions. It turns out that the QED regime is preferable either for small-to-moderate call centers or for large call centers with relatively tight performance constraints. The other two regimes are more appropriate for large call centers with loose constraints. We consider two versions of the constraint satisfaction problem. The first one is constraint satisfaction on a single time interval, say one hour, which is common in practice. Of special interest is a constraint on the tail probability, in which case our new ED + QED staffing turns out asymptotically optimal. We also address a global constraint problem, say over a full day. Here several time intervals, say 24 hours, are considered, with interval-dependent staffing levels allowed; one seeks to minimize staffing levels, or more generally costs, given the overall performance constraint. In this case, there is the added flexibility of trading service levels among time intervals, but we demonstrate that only little gain is associated with this flexibility if one is concerned with the fraction abandoning.

Suggested Citation

  • Avishai Mandelbaum & Sergey Zeltyn, 2009. "Staffing Many-Server Queues with Impatient Customers: Constraint Satisfaction in Call Centers," Operations Research, INFORMS, vol. 57(5), pages 1189-1205, October.
  • Handle: RePEc:inm:oropre:v:57:y:2009:i:5:p:1189-1205
    DOI: 10.1287/opre.1080.0651
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/opre.1080.0651
    Download Restriction: no

    File URL: https://libkey.io/10.1287/opre.1080.0651?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ramandeep S. Randhawa & Sunil Kumar, 2008. "Usage Restriction and Subscription Services: Operational Benefits with Rational Users," Manufacturing & Service Operations Management, INFORMS, vol. 10(3), pages 429-447, December.
    2. Linda V. Green & Peter J. Kolesar & João Soares, 2001. "Improving the Sipp Approach for Staffing Service Systems That Have Cyclic Demands," Operations Research, INFORMS, vol. 49(4), pages 549-564, August.
    3. Ward Whitt, 2005. "Engineering Solution of a Basic Call-Center Model," Management Science, INFORMS, vol. 51(2), pages 221-235, February.
    4. Mor Armony & Erica Plambeck & Sridhar Seshadri, 2009. "Sensitivity of Optimal Capacity to Customer Impatience in an Unobservable M/M/S Queue (Why You Shouldn't Shout at the DMV)," Manufacturing & Service Operations Management, INFORMS, vol. 11(1), pages 19-32, June.
    5. Shlomo Halfin & Ward Whitt, 1981. "Heavy-Traffic Limits for Queues with Many Exponential Servers," Operations Research, INFORMS, vol. 29(3), pages 567-588, June.
    6. Weinberg, Jonathan & Brown, Lawrence D. & Stroud, Jonathan R., 2007. "Bayesian Forecasting of an Inhomogeneous Poisson Process With Applications to Call Center Data," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 1185-1198, December.
    7. Opher Baron & Joseph Milner, 2009. "Staffing to Maximize Profit for Call Centers with Alternate Service-Level Agreements," Operations Research, INFORMS, vol. 57(3), pages 685-700, June.
    8. Lawrence Brown & Noah Gans & Avishai Mandelbaum & Anat Sakov & Haipeng Shen & Sergey Zeltyn & Linda Zhao, 2005. "Statistical Analysis of a Telephone Call Center: A Queueing-Science Perspective," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 36-50, March.
    9. Zohar Feldman & Avishai Mandelbaum & William A. Massey & Ward Whitt, 2008. "Staffing of Time-Varying Queues to Achieve Time-Stable Performance," Management Science, INFORMS, vol. 54(2), pages 324-338, February.
    10. Ward Whitt, 1992. "Understanding the Efficiency of Multi-Server Service Systems," Management Science, INFORMS, vol. 38(5), pages 708-723, May.
    11. Sem Borst & Avi Mandelbaum & Martin I. Reiman, 2004. "Dimensioning Large Call Centers," Operations Research, INFORMS, vol. 52(1), pages 17-34, February.
    12. Achal Bassamboo & J. Michael Harrison & Assaf Zeevi, 2006. "Design and Control of a Large Call Center: Asymptotic Analysis of an LP-Based Method," Operations Research, INFORMS, vol. 54(3), pages 419-435, June.
    13. Francis de Véricourt & Otis B. Jennings, 2008. "Dimensioning Large-Scale Membership Services," Operations Research, INFORMS, vol. 56(1), pages 173-187, February.
    14. Ramandeep S. Randhawa & Sunil Kumar, 2009. "Multiserver Loss Systems with Subscribers," Mathematics of Operations Research, INFORMS, vol. 34(1), pages 142-179, February.
    15. J. Michael Harrison & Assaf Zeevi, 2005. "A Method for Staffing Large Call Centers Based on Stochastic Fluid Models," Manufacturing & Service Operations Management, INFORMS, vol. 7(1), pages 20-36, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Defraeye, Mieke & Van Nieuwenhuyse, Inneke, 2016. "Staffing and scheduling under nonstationary demand for service: A literature review," Omega, Elsevier, vol. 58(C), pages 4-25.
    2. Opher Baron & Joseph Milner, 2009. "Staffing to Maximize Profit for Call Centers with Alternate Service-Level Agreements," Operations Research, INFORMS, vol. 57(3), pages 685-700, June.
    3. Achal Bassamboo & Assaf Zeevi, 2009. "On a Data-Driven Method for Staffing Large Call Centers," Operations Research, INFORMS, vol. 57(3), pages 714-726, June.
    4. Merve Bodur & James R. Luedtke, 2017. "Mixed-Integer Rounding Enhanced Benders Decomposition for Multiclass Service-System Staffing and Scheduling with Arrival Rate Uncertainty," Management Science, INFORMS, vol. 63(7), pages 2073-2091, July.
    5. Eugene Furman & Adam Diamant & Murat Kristal, 2021. "Customer Acquisition and Retention: A Fluid Approach for Staffing," Production and Operations Management, Production and Operations Management Society, vol. 30(11), pages 4236-4257, November.
    6. Francis de Véricourt & Otis B. Jennings, 2008. "Dimensioning Large-Scale Membership Services," Operations Research, INFORMS, vol. 56(1), pages 173-187, February.
    7. Noah Gans & Haipeng Shen & Yong-Pin Zhou & Nikolay Korolev & Alan McCord & Herbert Ristock, 2015. "Parametric Forecasting and Stochastic Programming Models for Call-Center Workforce Scheduling," Manufacturing & Service Operations Management, INFORMS, vol. 17(4), pages 571-588, October.
    8. Niyirora, Jerome & Zhuang, Jun, 2017. "Fluid approximations and control of queues in emergency departments," European Journal of Operational Research, Elsevier, vol. 261(3), pages 1110-1124.
    9. Mor Armony & Erica Plambeck & Sridhar Seshadri, 2009. "Sensitivity of Optimal Capacity to Customer Impatience in an Unobservable M/M/S Queue (Why You Shouldn't Shout at the DMV)," Manufacturing & Service Operations Management, INFORMS, vol. 11(1), pages 19-32, June.
    10. Noa Zychlinski, 2023. "Applications of fluid models in service operations management," Queueing Systems: Theory and Applications, Springer, vol. 103(1), pages 161-185, February.
    11. Rodney B. Wallace & Ward Whitt, 2005. "A Staffing Algorithm for Call Centers with Skill-Based Routing," Manufacturing & Service Operations Management, INFORMS, vol. 7(4), pages 276-294, August.
    12. Zohar Feldman & Avishai Mandelbaum & William A. Massey & Ward Whitt, 2008. "Staffing of Time-Varying Queues to Achieve Time-Stable Performance," Management Science, INFORMS, vol. 54(2), pages 324-338, February.
    13. Ying Chen & John J. Hasenbein, 2017. "Staffing large-scale service systems with distributional uncertainty," Queueing Systems: Theory and Applications, Springer, vol. 87(1), pages 55-79, October.
    14. Achal Bassamboo & Ramandeep S. Randhawa & Assaf Zeevi, 2010. "Capacity Sizing Under Parameter Uncertainty: Safety Staffing Principles Revisited," Management Science, INFORMS, vol. 56(10), pages 1668-1686, October.
    15. Li Xiao & Susan H. Xu & David D. Yao & Hanqin Zhang, 2022. "Optimal staffing for ticket queues," Queueing Systems: Theory and Applications, Springer, vol. 102(1), pages 309-351, October.
    16. R. Bekker & A. Bruin, 2010. "Time-dependent analysis for refused admissions in clinical wards," Annals of Operations Research, Springer, vol. 178(1), pages 45-65, July.
    17. Achal Bassamboo & J. Michael Harrison & Assaf Zeevi, 2006. "Design and Control of a Large Call Center: Asymptotic Analysis of an LP-Based Method," Operations Research, INFORMS, vol. 54(3), pages 419-435, June.
    18. Robbins, Thomas R. & Harrison, Terry P., 2010. "A stochastic programming model for scheduling call centers with global Service Level Agreements," European Journal of Operational Research, Elsevier, vol. 207(3), pages 1608-1619, December.
    19. Jing Dong & Rouba Ibrahimb, 2020. "Managing Supply in the On-Demand Economy: Flexible Workers, Full-Time Employees, or Both?," Operations Research, INFORMS, vol. 68(4), pages 1238-1264, July.
    20. Hassan Hmedi & Ari Arapostathis & Guodong Pang, 2022. "Uniform stability of some large-scale parallel server networks," Queueing Systems: Theory and Applications, Springer, vol. 102(3), pages 509-552, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:oropre:v:57:y:2009:i:5:p:1189-1205. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.