IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v129y2019i1p283-322.html
   My bibliography  Save this article

Infinite horizon asymptotic average optimality for large-scale parallel server networks

Author

Listed:
  • Arapostathis, Ari
  • Pang, Guodong

Abstract

We study infinite-horizon asymptotic average optimality for parallel server networks with multiple classes of jobs and multiple server pools in the Halfin–Whitt regime. Three control formulations are considered: (1) minimizing the queueing and idleness cost, (2) minimizing the queueing cost under constraints on idleness at each server pool, and (3) fairly allocating the idle servers among different server pools. For the third problem, we consider a class of bounded-queue, bounded-state (BQBS) stable networks, in which any moment of the state is bounded by that of the queue only (for both the limiting diffusion and diffusion-scaled state processes). We show that the optimal values for the diffusion-scaled state processes converge to the corresponding values of the ergodic control problems for the limiting diffusion. We present a family of state-dependent Markov balanced saturation policies (BSPs) that stabilize the controlled diffusion-scaled state processes. It is shown that under these policies, the diffusion-scaled state process is exponentially ergodic, provided that at least one class of jobs has a positive abandonment rate. We also establish useful moment bounds, and study the ergodic properties of the diffusion-scaled state processes, which play a crucial role in proving the asymptotic optimality.

Suggested Citation

  • Arapostathis, Ari & Pang, Guodong, 2019. "Infinite horizon asymptotic average optimality for large-scale parallel server networks," Stochastic Processes and their Applications, Elsevier, vol. 129(1), pages 283-322.
  • Handle: RePEc:eee:spapps:v:129:y:2019:i:1:p:283-322
    DOI: 10.1016/j.spa.2018.03.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304414918300462
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spa.2018.03.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Itay Gurvich & Ward Whitt, 2009. "Queue-and-Idleness-Ratio Controls in Many-Server Service Systems," Mathematics of Operations Research, INFORMS, vol. 34(2), pages 363-396, May.
    2. Itay Gurvich & Ward Whitt, 2009. "Scheduling Flexible Servers with Convex Delay Costs in Many-Server Service Systems," Manufacturing & Service Operations Management, INFORMS, vol. 11(2), pages 237-253, June.
    3. Mor Armony & Amy R. Ward, 2010. "Fair Dynamic Routing in Large-Scale Heterogeneous-Server Systems," Operations Research, INFORMS, vol. 58(3), pages 624-637, June.
    4. Amy R. Ward & Mor Armony, 2013. "Blind Fair Routing in Large-Scale Service Systems with Heterogeneous Customers and Servers," Operations Research, INFORMS, vol. 61(1), pages 228-243, February.
    5. J. G. Dai & Tolga Tezcan, 2011. "State Space Collapse in Many-Server Diffusion Limits of Parallel Server Systems," Mathematics of Operations Research, INFORMS, vol. 36(2), pages 271-320, May.
    6. Noah Gans & Ger Koole & Avishai Mandelbaum, 2003. "Telephone Call Centers: Tutorial, Review, and Research Prospects," Manufacturing & Service Operations Management, INFORMS, vol. 5(2), pages 79-141, September.
    7. Pengyi Shi & Mabel C. Chou & J. G. Dai & Ding Ding & Joe Sim, 2016. "Models and Insights for Hospital Inpatient Operations: Time-Dependent ED Boarding Time," Management Science, INFORMS, vol. 62(1), pages 1-28, January.
    8. Rami Atar & Avi Mandelbaum & Gennady Shaikhet, 2009. "Simplified Control Problems for Multiclass Many-Server Queueing Systems," Mathematics of Operations Research, INFORMS, vol. 34(4), pages 795-812, November.
    9. Itai Gurvich & Ward Whitt, 2010. "Service-Level Differentiation in Many-Server Service Systems via Queue-Ratio Routing," Operations Research, INFORMS, vol. 58(2), pages 316-328, April.
    10. Douc, Randal & Fort, Gersende & Guillin, Arnaud, 2009. "Subgeometric rates of convergence of f-ergodic strong Markov processes," Stochastic Processes and their Applications, Elsevier, vol. 119(3), pages 897-923, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Arapostathis, Ari & Pang, Guodong & Zheng, Yi, 2020. "Ergodic control of diffusions with compound Poisson jumps under a general structural hypothesis," Stochastic Processes and their Applications, Elsevier, vol. 130(11), pages 6733-6756.
    2. Ari Arapostathis & Hassan Hmedi & Guodong Pang, 2021. "On Uniform Exponential Ergodicity of Markovian Multiclass Many-Server Queues in the Halfin–Whitt Regime," Mathematics of Operations Research, INFORMS, vol. 46(2), pages 772-796, May.
    3. Hassan Hmedi & Ari Arapostathis & Guodong Pang, 2022. "Uniform stability of some large-scale parallel server networks," Queueing Systems: Theory and Applications, Springer, vol. 102(3), pages 509-552, December.
    4. Silviya Valeva & Guodong Pang & Andrew J. Schaefer & Gilles Clermont, 2023. "Acuity-Based Allocation of ICU-Downstream Beds with Flexible Staffing," INFORMS Journal on Computing, INFORMS, vol. 35(2), pages 403-422, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jinsheng Chen & Jing Dong & Pengyi Shi, 2020. "A survey on skill-based routing with applications to service operations management," Queueing Systems: Theory and Applications, Springer, vol. 96(1), pages 53-82, October.
    2. Zhong, Zhiheng & Cao, Ping, 2023. "Balanced routing with partial information in a distributed parallel many-server queueing system," European Journal of Operational Research, Elsevier, vol. 304(2), pages 618-633.
    3. Adan, Ivo J.B.F. & Boon, Marko A.A. & Weiss, Gideon, 2019. "Design heuristic for parallel many server systems," European Journal of Operational Research, Elsevier, vol. 273(1), pages 259-277.
    4. Ari Arapostathis & Guodong Pang, 2018. "Infinite-Horizon Average Optimality of the N-Network in the Halfin–Whitt Regime," Mathematics of Operations Research, INFORMS, vol. 43(3), pages 838-866, August.
    5. Wyean Chan & Ger Koole & Pierre L'Ecuyer, 2014. "Dynamic Call Center Routing Policies Using Call Waiting and Agent Idle Times," Manufacturing & Service Operations Management, INFORMS, vol. 16(4), pages 544-560, October.
    6. Merve Bodur & James R. Luedtke, 2017. "Mixed-Integer Rounding Enhanced Benders Decomposition for Multiclass Service-System Staffing and Scheduling with Arrival Rate Uncertainty," Management Science, INFORMS, vol. 63(7), pages 2073-2091, July.
    7. Dongyuan Zhan & Gideon Weiss, 2018. "Many-server scaling of the N-system under FCFS–ALIS," Queueing Systems: Theory and Applications, Springer, vol. 88(1), pages 27-71, February.
    8. Carri W. Chan & Linda V. Green & Suparerk Lekwijit & Lijian Lu & Gabriel Escobar, 2019. "Assessing the Impact of Service Level When Customer Needs Are Uncertain: An Empirical Investigation of Hospital Step-Down Units," Management Science, INFORMS, vol. 65(2), pages 751-775, February.
    9. Noa Zychlinski, 2023. "Applications of fluid models in service operations management," Queueing Systems: Theory and Applications, Springer, vol. 103(1), pages 161-185, February.
    10. Ohad Perry & Ward Whitt, 2011. "A Fluid Approximation for Service Systems Responding to Unexpected Overloads," Operations Research, INFORMS, vol. 59(5), pages 1159-1170, October.
    11. Cao, Ping & Zhong, Zhiheng & Huang, Junfei, 2021. "Dynamic routing in a distributed parallel many-server service system: The effect of ξ-choice," European Journal of Operational Research, Elsevier, vol. 294(1), pages 219-235.
    12. Mor Armony & Avishai Mandelbaum, 2011. "Routing and Staffing in Large-Scale Service Systems: The Case of Homogeneous Impatient Customers and Heterogeneous Servers," Operations Research, INFORMS, vol. 59(1), pages 50-65, February.
    13. Jinsheng Chen & Jing Dong, 2024. "Managing flexibility: optimal sizing and scheduling of flexible servers," Queueing Systems: Theory and Applications, Springer, vol. 108(3), pages 415-474, December.
    14. Amy R. Ward & Mor Armony, 2013. "Blind Fair Routing in Large-Scale Service Systems with Heterogeneous Customers and Servers," Operations Research, INFORMS, vol. 61(1), pages 228-243, February.
    15. J. G. Dai & Pengyi Shi, 2019. "Inpatient Overflow: An Approximate Dynamic Programming Approach," Manufacturing & Service Operations Management, INFORMS, vol. 21(4), pages 894-911, October.
    16. Ohad Perry & Ward Whitt, 2013. "A Fluid Limit for an Overloaded X Model via a Stochastic Averaging Principle," Mathematics of Operations Research, INFORMS, vol. 38(2), pages 294-349, May.
    17. Ibrahim, Rouba & L’Ecuyer, Pierre & Shen, Haipeng & Thiongane, Mamadou, 2016. "Inter-dependent, heterogeneous, and time-varying service-time distributions in call centers," European Journal of Operational Research, Elsevier, vol. 250(2), pages 480-492.
    18. Avishai Mandelbaum & Petar Momčilović & Yulia Tseytlin, 2012. "On Fair Routing from Emergency Departments to Hospital Wards: QED Queues with Heterogeneous Servers," Management Science, INFORMS, vol. 58(7), pages 1273-1291, July.
    19. Jeunghyun Kim & Ramandeep S. Randhawa & Amy R. Ward, 2018. "Dynamic Scheduling in a Many-Server, Multiclass System: The Role of Customer Impatience in Large Systems," Manufacturing & Service Operations Management, INFORMS, vol. 20(2), pages 285-301, May.
    20. Tom F. Tan & Bradley R. Staats, 2020. "Behavioral Drivers of Routing Decisions: Evidence from Restaurant Table Assignment," Production and Operations Management, Production and Operations Management Society, vol. 29(4), pages 1050-1070, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:129:y:2019:i:1:p:283-322. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.