IDEAS home Printed from https://ideas.repec.org/a/inm/oropre/v58y2010i1p94-110.html
   My bibliography  Save this article

Dynamic Control of N -Systems with Many Servers: Asymptotic Optimality of a Static Priority Policy in Heavy Traffic

Author

Listed:
  • Tolga Tezcan

    (Industrial and Enterprise Systems Engineering, University of Illinois at Urbana--Champaign, Urbana, Illinois 61801)

  • J. G. Dai

    (H. Milton Stewart School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332)

Abstract

We consider a class of parallel server systems that are known as N -systems. In an N -system, there are two customer classes that are catered by servers in two pools. Servers in one of the pools are cross-trained and can serve customers from both classes, whereas all of the servers in the other pool can serve only one of the customer classes. A customer reneges from his queue if his waiting time in the queue exceeds his patience. Our objective is to minimize the total cost that includes a linear holding cost and a reneging cost. We prove that, when the service speed is pool dependent, but not class dependent, a c(mu) -type greedy policy is asymptotically optimal in many-server heavy traffic.

Suggested Citation

  • Tolga Tezcan & J. G. Dai, 2010. "Dynamic Control of N -Systems with Many Servers: Asymptotic Optimality of a Static Priority Policy in Heavy Traffic," Operations Research, INFORMS, vol. 58(1), pages 94-110, February.
  • Handle: RePEc:inm:oropre:v:58:y:2010:i:1:p:94-110
    DOI: 10.1287/opre.1080.0668
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/opre.1080.0668
    Download Restriction: no

    File URL: https://libkey.io/10.1287/opre.1080.0668?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Noah Gans & Yong-Pin Zhou, 2007. "Call-Routing Schemes for Call-Center Outsourcing," Manufacturing & Service Operations Management, INFORMS, vol. 9(1), pages 33-50, May.
    2. J. Michael Harrison & Assaf Zeevi, 2004. "Dynamic Scheduling of a Multiclass Queue in the Halfin-Whitt Heavy Traffic Regime," Operations Research, INFORMS, vol. 52(2), pages 243-257, April.
    3. Constantinos Maglaras & Assaf Zeevi, 2003. "Pricing and Capacity Sizing for Systems with Shared Resources: Approximate Solutions and Scaling Relations," Management Science, INFORMS, vol. 49(8), pages 1018-1038, August.
    4. Avishai Mandelbaum & Alexander L. Stolyar, 2004. "Scheduling Flexible Servers with Convex Delay Costs: Heavy-Traffic Optimality of the Generalized cμ-Rule," Operations Research, INFORMS, vol. 52(6), pages 836-855, December.
    5. Itay Gurvich & Mor Armony & Avishai Mandelbaum, 2008. "Service-Level Differentiation in Call Centers with Fully Flexible Servers," Management Science, INFORMS, vol. 54(2), pages 279-294, February.
    6. Noah Gans & Ger Koole & Avishai Mandelbaum, 2003. "Telephone Call Centers: Tutorial, Review, and Research Prospects," Manufacturing & Service Operations Management, INFORMS, vol. 5(2), pages 79-141, September.
    7. Shlomo Halfin & Ward Whitt, 1981. "Heavy-Traffic Limits for Queues with Many Exponential Servers," Operations Research, INFORMS, vol. 29(3), pages 567-588, June.
    8. Lawrence Brown & Noah Gans & Avishai Mandelbaum & Anat Sakov & Haipeng Shen & Sergey Zeltyn & Linda Zhao, 2005. "Statistical Analysis of a Telephone Call Center: A Queueing-Science Perspective," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 36-50, March.
    9. Sem Borst & Avi Mandelbaum & Martin I. Reiman, 2004. "Dimensioning Large Call Centers," Operations Research, INFORMS, vol. 52(1), pages 17-34, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Avishai Mandelbaum & Petar Momčilović, 2008. "Queues with Many Servers: The Virtual Waiting-Time Process in the QED Regime," Mathematics of Operations Research, INFORMS, vol. 33(3), pages 561-586, August.
    2. Achal Bassamboo & Assaf Zeevi, 2009. "On a Data-Driven Method for Staffing Large Call Centers," Operations Research, INFORMS, vol. 57(3), pages 714-726, June.
    3. Noa Zychlinski, 2023. "Applications of fluid models in service operations management," Queueing Systems: Theory and Applications, Springer, vol. 103(1), pages 161-185, February.
    4. Achal Bassamboo & J. Michael Harrison & Assaf Zeevi, 2006. "Design and Control of a Large Call Center: Asymptotic Analysis of an LP-Based Method," Operations Research, INFORMS, vol. 54(3), pages 419-435, June.
    5. Francis de Véricourt & Otis B. Jennings, 2008. "Dimensioning Large-Scale Membership Services," Operations Research, INFORMS, vol. 56(1), pages 173-187, February.
    6. J. G. Dai & Tolga Tezcan, 2011. "State Space Collapse in Many-Server Diffusion Limits of Parallel Server Systems," Mathematics of Operations Research, INFORMS, vol. 36(2), pages 271-320, May.
    7. Sunil Kumar & Ramandeep S. Randhawa, 2010. "Exploiting Market Size in Service Systems," Manufacturing & Service Operations Management, INFORMS, vol. 12(3), pages 511-526, September.
    8. Vijay Mehrotra & Kevin Ross & Geoff Ryder & Yong-Pin Zhou, 2012. "Routing to Manage Resolution and Waiting Time in Call Centers with Heterogeneous Servers," Manufacturing & Service Operations Management, INFORMS, vol. 14(1), pages 66-81, January.
    9. Opher Baron & Joseph Milner, 2009. "Staffing to Maximize Profit for Call Centers with Alternate Service-Level Agreements," Operations Research, INFORMS, vol. 57(3), pages 685-700, June.
    10. Eugene Furman & Adam Diamant & Murat Kristal, 2021. "Customer Acquisition and Retention: A Fluid Approach for Staffing," Production and Operations Management, Production and Operations Management Society, vol. 30(11), pages 4236-4257, November.
    11. Itai Gurvich & Ward Whitt, 2010. "Service-Level Differentiation in Many-Server Service Systems via Queue-Ratio Routing," Operations Research, INFORMS, vol. 58(2), pages 316-328, April.
    12. Dongyuan Zhan & Amy R. Ward, 2014. "Threshold Routing to Trade Off Waiting and Call Resolution in Call Centers," Manufacturing & Service Operations Management, INFORMS, vol. 16(2), pages 220-237, May.
    13. Jeunghyun Kim & Ramandeep S. Randhawa & Amy R. Ward, 2018. "Dynamic Scheduling in a Many-Server, Multiclass System: The Role of Customer Impatience in Large Systems," Manufacturing & Service Operations Management, INFORMS, vol. 20(2), pages 285-301, May.
    14. Achal Bassamboo & Ramandeep S. Randhawa & Assaf Zeevi, 2010. "Capacity Sizing Under Parameter Uncertainty: Safety Staffing Principles Revisited," Management Science, INFORMS, vol. 56(10), pages 1668-1686, October.
    15. Jinsheng Chen & Jing Dong & Pengyi Shi, 2020. "A survey on skill-based routing with applications to service operations management," Queueing Systems: Theory and Applications, Springer, vol. 96(1), pages 53-82, October.
    16. Amy R. Ward & Mor Armony, 2013. "Blind Fair Routing in Large-Scale Service Systems with Heterogeneous Customers and Servers," Operations Research, INFORMS, vol. 61(1), pages 228-243, February.
    17. Merve Bodur & James R. Luedtke, 2017. "Mixed-Integer Rounding Enhanced Benders Decomposition for Multiclass Service-System Staffing and Scheduling with Arrival Rate Uncertainty," Management Science, INFORMS, vol. 63(7), pages 2073-2091, July.
    18. J. Michael Harrison & Assaf Zeevi, 2005. "A Method for Staffing Large Call Centers Based on Stochastic Fluid Models," Manufacturing & Service Operations Management, INFORMS, vol. 7(1), pages 20-36, September.
    19. Itay Gurvich & Ward Whitt, 2009. "Scheduling Flexible Servers with Convex Delay Costs in Many-Server Service Systems," Manufacturing & Service Operations Management, INFORMS, vol. 11(2), pages 237-253, June.
    20. Noah Gans & Yong-Pin Zhou, 2007. "Call-Routing Schemes for Call-Center Outsourcing," Manufacturing & Service Operations Management, INFORMS, vol. 9(1), pages 33-50, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:oropre:v:58:y:2010:i:1:p:94-110. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.