IDEAS home Printed from https://ideas.repec.org/a/spr/queues/v101y2022i3d10.1007_s11134-021-09725-8.html
   My bibliography  Save this article

Applying optimization theory to study extremal GI/GI/1 transient mean waiting times

Author

Listed:
  • Yan Chen

    (Columbia University)

  • Ward Whitt

    (Columbia University)

Abstract

We study the tight upper bound of the transient mean waiting time in the classical GI/GI/1 queue over candidate interarrival-time distributions with finite support, given the first two moments of the interarrival time and the full service-time distribution. We formulate the problem as a non-convex nonlinear program. We derive the gradient of the transient mean waiting time and then show that a stationary point of the optimization can be characterized by a linear program. We develop and apply a stochastic variant of the Frank and Wolfe (Naval Res Logist Q 3:95–110, 1956) algorithm to find a stationary point for any given service-time distribution. We also establish necessary conditions and sufficient conditions for stationary points to be three-point distributions or special two-point distributions. We illustrate by applying simulation together with optimization to analyze several examples.

Suggested Citation

  • Yan Chen & Ward Whitt, 2022. "Applying optimization theory to study extremal GI/GI/1 transient mean waiting times," Queueing Systems: Theory and Applications, Springer, vol. 101(3), pages 197-220, August.
  • Handle: RePEc:spr:queues:v:101:y:2022:i:3:d:10.1007_s11134-021-09725-8
    DOI: 10.1007/s11134-021-09725-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11134-021-09725-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11134-021-09725-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. James E. Smith, 1995. "Generalized Chebychev Inequalities: Theory and Applications in Decision Analysis," Operations Research, INFORMS, vol. 43(5), pages 807-825, October.
    2. Henry Lam & Clementine Mottet, 2017. "Tail Analysis Without Parametric Models: A Worst-Case Perspective," Operations Research, INFORMS, vol. 65(6), pages 1696-1711, December.
    3. Marguerite Frank & Philip Wolfe, 1956. "An algorithm for quadratic programming," Naval Research Logistics Quarterly, John Wiley & Sons, vol. 3(1‐2), pages 95-110, March.
    4. Yan Chen & Ward Whitt, 2020. "Algorithms for the upper bound mean waiting time in the GI/GI/1 queue," Queueing Systems: Theory and Applications, Springer, vol. 94(3), pages 327-356, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Soumyadip Ghosh & Henry Lam, 2019. "Robust Analysis in Stochastic Simulation: Computation and Performance Guarantees," Operations Research, INFORMS, vol. 67(1), pages 232-249, January.
    2. Aleksandrina Goeva & Henry Lam & Huajie Qian & Bo Zhang, 2019. "Optimization-Based Calibration of Simulation Input Models," Operations Research, INFORMS, vol. 67(5), pages 1362-1382, September.
    3. van Eekelen, Wouter, 2023. "Distributionally robust views on queues and related stochastic models," Other publications TiSEM 9b99fc05-9d68-48eb-ae8c-9, Tilburg University, School of Economics and Management.
    4. Georgia Perakis & Guillaume Roels, 2008. "Regret in the Newsvendor Model with Partial Information," Operations Research, INFORMS, vol. 56(1), pages 188-203, February.
    5. Cai, Hanqing & Wang, Tengyao, 2023. "Estimation of high-dimensional change-points under a group sparsity structure," LSE Research Online Documents on Economics 118366, London School of Economics and Political Science, LSE Library.
    6. Laurent El Ghaoui & Maksim Oks & Francois Oustry, 2003. "Worst-Case Value-At-Risk and Robust Portfolio Optimization: A Conic Programming Approach," Operations Research, INFORMS, vol. 51(4), pages 543-556, August.
    7. Guillaume Sagnol & Edouard Pauwels, 2019. "An unexpected connection between Bayes A-optimal designs and the group lasso," Statistical Papers, Springer, vol. 60(2), pages 565-584, April.
    8. Villegas, Andrés M. & Medaglia, Andrés L. & Zuluaga, Luis F., 2012. "Computing bounds on the expected payoff of Alternative Risk Transfer products," Insurance: Mathematics and Economics, Elsevier, vol. 51(2), pages 271-281.
    9. Abdelfettah Laouzai & Rachid Ouafi, 2022. "A prediction model for atmospheric pollution reduction from urban traffic," Environment and Planning B, , vol. 49(2), pages 566-584, February.
    10. Zhaolin Li & Samuel N. Kirshner, 2021. "Salesforce Compensation and Two‐Sided Ambiguity: Robust Moral Hazard with Moment Information," Production and Operations Management, Production and Operations Management Society, vol. 30(9), pages 2944-2961, September.
    11. Shipra Agrawal & Nikhil R. Devanur, 2019. "Bandits with Global Convex Constraints and Objective," Operations Research, INFORMS, vol. 67(5), pages 1486-1502, September.
    12. Chou, Chang-Chi & Chiang, Wen-Chu & Chen, Albert Y., 2022. "Emergency medical response in mass casualty incidents considering the traffic congestions in proximity on-site and hospital delays," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 158(C).
    13. Viet Anh Nguyen & Soroosh Shafiee & Damir Filipovi'c & Daniel Kuhn, 2021. "Mean-Covariance Robust Risk Measurement," Papers 2112.09959, arXiv.org, revised Nov 2023.
    14. Viet Anh Nguyen & Fan Zhang & Shanshan Wang & Jose Blanchet & Erick Delage & Yinyu Ye, 2021. "Robustifying Conditional Portfolio Decisions via Optimal Transport," Papers 2103.16451, arXiv.org, revised Apr 2024.
    15. Daniel Dadush & László A. Végh & Giacomo Zambelli, 2020. "Rescaling Algorithms for Linear Conic Feasibility," Mathematics of Operations Research, INFORMS, vol. 45(2), pages 732-754, May.
    16. Francesco Rinaldi & Damiano Zeffiro, 2023. "Avoiding bad steps in Frank-Wolfe variants," Computational Optimization and Applications, Springer, vol. 84(1), pages 225-264, January.
    17. Beck, Yasmine & Ljubić, Ivana & Schmidt, Martin, 2023. "A survey on bilevel optimization under uncertainty," European Journal of Operational Research, Elsevier, vol. 311(2), pages 401-426.
    18. Wouter van Eekelen & Dick den Hertog & Johan S.H. van Leeuwaarden, 2022. "MAD Dispersion Measure Makes Extremal Queue Analysis Simple," INFORMS Journal on Computing, INFORMS, vol. 34(3), pages 1681-1692, May.
    19. Tiến-Sơn Phạm, 2019. "Optimality Conditions for Minimizers at Infinity in Polynomial Programming," Management Science, INFORMS, vol. 44(4), pages 1381-1395, November.
    20. Nikolaus Schweizer & Nora Szech, 2018. "Optimal Revelation of Life-Changing Information," Management Science, INFORMS, vol. 64(11), pages 5250-5262, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:queues:v:101:y:2022:i:3:d:10.1007_s11134-021-09725-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.