IDEAS home Printed from https://ideas.repec.org/a/spr/qualqt/v58y2024i6d10.1007_s11135-023-01728-2.html
   My bibliography  Save this article

Multipopulation mortality analysis: bringing out the unobservable with latent clustering

Author

Listed:
  • Ana Debon

    (Universitat Politecnica de Valencia)

  • Steven Haberman

    (City, University of London)

  • Gabriella Piscopo

    (University of Naples Federico II)

Abstract

Mortality patterns experienced in closely related populations show similarities in some aspects and differences in others. Indeed, if a decline in mortality rates among low-mortality countries is observed, it is possible that populations experience different trends through which this decline occurs. Observing mortality rates for ages and over specific time windows, it is evident that the different interactions between the variables age and time influence longevity trends. Therefore, to grasp the complexity of the phenomenon, the similarities or differences in mortality need to be analyzed by considering three dimensions: age, year, and country, simultaneously. With this aim in mind, we propose applying a multidimensional latent clustering approach to multipopulation mortality data in this paper. We investigate some similarities between the mortality experience of different countries, searching for latent structure across these groups. Starting from the observation units represented by single countries, we nest them in higher-level units of clusters. We apply the proposed model to the mortality rates of 20 developed countries using data from 1965 to 2019 from the Human Mortality Database. We present detailed results for the lower mortality cluster, which collects ages from 50 to 60 among all countries of the selected dataset and highlights different mortality trends between the countries.

Suggested Citation

  • Ana Debon & Steven Haberman & Gabriella Piscopo, 2024. "Multipopulation mortality analysis: bringing out the unobservable with latent clustering," Quality & Quantity: International Journal of Methodology, Springer, vol. 58(6), pages 5107-5123, December.
  • Handle: RePEc:spr:qualqt:v:58:y:2024:i:6:d:10.1007_s11135-023-01728-2
    DOI: 10.1007/s11135-023-01728-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11135-023-01728-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11135-023-01728-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Debón, A. & Chaves, L. & Haberman, S. & Villa, F., 2017. "Characterization of between-group inequality of longevity in European Union countries," Insurance: Mathematics and Economics, Elsevier, vol. 75(C), pages 151-165.
    2. Samuel H. Preston & Jessica Y. Ho, 2009. "Low Life Expectancy in the United States: Is the Health Care System at Fault?," NBER Working Papers 15213, National Bureau of Economic Research, Inc.
    3. Pavel Grigoriev & Markéta Pechholdová, 2017. "Health Convergence Between East and West Germany as Reflected in Long-Term Cause-Specific Mortality Trends: To What Extent was it Due to Reunification?," European Journal of Population, Springer;European Association for Population Studies, vol. 33(5), pages 701-731, December.
    4. Søren Jarner & Esben Kryger & Chresten Dengsøe, 2008. "The evolution of death rates and life expectancy in Denmark," Scandinavian Actuarial Journal, Taylor & Francis Journals, vol. 2008(2-3), pages 147-173.
    5. Ruhao Wu & Bo Wang, 2019. "Coherent mortality forecasting by the weighted multilevel functional principal component approach," Journal of Applied Statistics, Taylor & Francis Journals, vol. 46(10), pages 1774-1791, July.
    6. Valeria D’Amato & Steven Haberman & Gabriella Piscopo & Maria Russolillo & Lorenzo Trapani, 2014. "Detecting Common Longevity Trends by a Multiple Population Approach," North American Actuarial Journal, Taylor & Francis Journals, vol. 18(1), pages 139-149.
    7. Haughton, Dominique & Legrand, Pascal & Woolford, Sam, 2009. "Review of Three Latent Class Cluster Analysis Packages: Latent Gold, poLCA, and MCLUST," The American Statistician, American Statistical Association, vol. 63(1), pages 81-91.
    8. Ainhoa-Elena Léger & Stefano Mazzuco, 2021. "What Can We Learn from the Functional Clustering of Mortality Data? An Application to the Human Mortality Database," European Journal of Population, Springer;European Association for Population Studies, vol. 37(4), pages 769-798, November.
    9. Kevin Milligan & Tammy Schirle, 2021. "The evolution of longevity: Evidence from Canada," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 54(1), pages 164-192, February.
    10. Christina Bohk-Ewald & Marcus Ebeling & Roland Rau, 2017. "Lifespan Disparity as an Additional Indicator for Evaluating Mortality Forecasts," Demography, Springer;Population Association of America (PAA), vol. 54(4), pages 1559-1577, August.
    11. Valeria D Amato & Steven Haberman & Gabriella Piscopo, 2019. "The dependency premium based on a multifactor model for dependent mortality data," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 48(1), pages 50-61, January.
    12. Gabriella Piscopo & Marina Resta, 2017. "Applying spectral biclustering to mortality data," Risks, MDPI, vol. 5(2), pages 1-13, April.
    13. Ryan D. Edwards & Shripad Tuljapurkar, 2005. "Inequality in Life Spans and a New Perspective on Mortality Convergence Across Industrialized Countries," Population and Development Review, The Population Council, Inc., vol. 31(4), pages 645-674, December.
    14. Nan Li & Ronald Lee, 2005. "Coherent mortality forecasts for a group of populations: An extension of the lee-carter method," Demography, Springer;Population Association of America (PAA), vol. 42(3), pages 575-594, August.
    15. Shripad Tuljapurkar & Nan Li & Carl Boe, 2000. "A universal pattern of mortality decline in the G7 countries," Nature, Nature, vol. 405(6788), pages 789-792, June.
    16. Yumo Dong & Fei Huang & Honglin Yu & Steven Haberman, 2020. "Multi-population mortality forecasting using tensor decomposition," Scandinavian Actuarial Journal, Taylor & Francis Journals, vol. 2020(8), pages 754-775, September.
    17. Andrea Nigri & Susanna Levantesi & Gabriella Piscopo, 2022. "Causes-of-Death Specific Estimates from Synthetic Health Measure: A Methodological Framework," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 162(2), pages 887-908, July.
    18. Hatzopoulos, P. & Haberman, S., 2013. "Common mortality modeling and coherent forecasts. An empirical analysis of worldwide mortality data," Insurance: Mathematics and Economics, Elsevier, vol. 52(2), pages 320-337.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ainhoa-Elena Léger & Stefano Mazzuco, 2021. "What Can We Learn from the Functional Clustering of Mortality Data? An Application to the Human Mortality Database," European Journal of Population, Springer;European Association for Population Studies, vol. 37(4), pages 769-798, November.
    2. de Jong, Piet & Tickle, Leonie & Xu, Jianhui, 2016. "Coherent modeling of male and female mortality using Lee–Carter in a complex number framework," Insurance: Mathematics and Economics, Elsevier, vol. 71(C), pages 130-137.
    3. Booth, Heather, 2006. "Demographic forecasting: 1980 to 2005 in review," International Journal of Forecasting, Elsevier, vol. 22(3), pages 547-581.
    4. Giovanni Cardillo & Paolo Giordani & Susanna Levantesi & Andrea Nigri, 2024. "A tensor-based approach to cause-of-death mortality modeling," Annals of Operations Research, Springer, vol. 342(3), pages 2075-2094, November.
    5. Blake, David & Cairns, Andrew J.G., 2021. "Longevity risk and capital markets: The 2019-20 update," Insurance: Mathematics and Economics, Elsevier, vol. 99(C), pages 395-439.
    6. Basellini, Ugofilippo & Camarda, Carlo Giovanni & Booth, Heather, 2023. "Thirty years on: A review of the Lee–Carter method for forecasting mortality," International Journal of Forecasting, Elsevier, vol. 39(3), pages 1033-1049.
    7. Bergeron-Boucher, Marie-Pier & Vázquez-Castillo, Paola & Missov, Trifon, 2022. "A modal age at death approach to forecasting mortality," SocArXiv 5zr2k_v1, Center for Open Science.
    8. Liu, Yanxin & Li, Johnny Siu-Hang, 2016. "It’s all in the hidden states: A longevity hedging strategy with an explicit measure of population basis risk," Insurance: Mathematics and Economics, Elsevier, vol. 70(C), pages 301-319.
    9. Basellini, Ugofilippo & Camarda, Carlo Giovanni & Booth, Heather, 2022. "Thirty years on: A review of the Lee-Carter method for forecasting mortality," SocArXiv 8u34d_v1, Center for Open Science.
    10. Simon Schnürch & Torsten Kleinow & Ralf Korn, 2021. "Clustering-Based Extensions of the Common Age Effect Multi-Population Mortality Model," Risks, MDPI, vol. 9(3), pages 1-32, March.
    11. Bergeron-Boucher, Marie-Pier & Vázquez-Castillo, Paola & Missov, Trifon, 2022. "A modal age at death approach to forecasting mortality," SocArXiv 5zr2k, Center for Open Science.
    12. Basellini, Ugofilippo & Camarda, Carlo Giovanni & Booth, Heather, 2022. "Thirty years on: A review of the Lee-Carter method for forecasting mortality," SocArXiv 8u34d, Center for Open Science.
    13. Shang, Han Lin & Haberman, Steven & Xu, Ruofan, 2022. "Multi-population modelling and forecasting life-table death counts," Insurance: Mathematics and Economics, Elsevier, vol. 106(C), pages 239-253.
    14. Debón, A. & Chaves, L. & Haberman, S. & Villa, F., 2017. "Characterization of between-group inequality of longevity in European Union countries," Insurance: Mathematics and Economics, Elsevier, vol. 75(C), pages 151-165.
    15. Duncan Gillespie & Meredith Trotter & Shripad Tuljapurkar, 2014. "Divergence in Age Patterns of Mortality Change Drives International Divergence in Lifespan Inequality," Demography, Springer;Population Association of America (PAA), vol. 51(3), pages 1003-1017, June.
    16. de Jong, Piet & Tickle, Leonie & Xu, Jianhui, 2020. "A more meaningful parameterization of the Lee–Carter model," Insurance: Mathematics and Economics, Elsevier, vol. 94(C), pages 1-8.
    17. Suryakant Yadav, 2021. "Progress of Inequality in Age at Death in India: Role of Adult Mortality," European Journal of Population, Springer;European Association for Population Studies, vol. 37(3), pages 523-550, July.
    18. Katrien Antonio & Anastasios Bardoutsos & Wilbert Ouburg, 2015. "Bayesian Poisson log-bilinear models for mortality projections with multiple populations," Working Papers Department of Accountancy, Finance and Insurance (AFI), Leuven 485564, KU Leuven, Faculty of Economics and Business (FEB), Department of Accountancy, Finance and Insurance (AFI), Leuven.
    19. Blake, David & El Karoui, Nicole & Loisel, Stéphane & MacMinn, Richard, 2018. "Longevity risk and capital markets: The 2015–16 update," Insurance: Mathematics and Economics, Elsevier, vol. 78(C), pages 157-173.
    20. Selin Özen & Şule Şahin, 2021. "A Two-Population Mortality Model to Assess Longevity Basis Risk," Risks, MDPI, vol. 9(2), pages 1-19, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:qualqt:v:58:y:2024:i:6:d:10.1007_s11135-023-01728-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.