IDEAS home Printed from https://ideas.repec.org/a/taf/uaajxx/v18y2014i1p139-149.html
   My bibliography  Save this article

Detecting Common Longevity Trends by a Multiple Population Approach

Author

Listed:
  • Valeria D’Amato
  • Steven Haberman
  • Gabriella Piscopo
  • Maria Russolillo
  • Lorenzo Trapani

Abstract

Recently the interest in the development of country and longevity risk models has been growing. The investigation of long-run equilibrium relationships could provide valuable information about the factors driving changes in mortality, in particular across ages and across countries. In order to investigate cross-country common longevity trends, tools to quantify, compare, and model the strength of dependence become essential. On one hand, it is necessary to take into account either the dependence for adjacent age groups or the dependence structure across time in a single population setting—a sort of intradependence structure. On the other hand, the dependence across multiple populations, which we describe as interdependence, can be explored for capturing common long-run relationships between countries. The objective of our work is to produce longevity projections by taking into account the presence of various forms of cross-sectional and temporal dependencies in the error processes of multiple populations, considering mortality data from different countries. The algorithm that we propose combines model-based predictions in the Lee-Carter (LC) framework with a bootstrap procedure for dependent data, and so both the historical parametric structure and the intragroup error correlation structure are preserved. We introduce a model which applies a sieve bootstrap to the residuals of the LC model and is able to reproduce, in the sampling, the dependence structure of the data under consideration. In the current article, the algorithm that we build is applied to a pool of populations by using ideas from panel data; we refer to this new algorithm as the Multiple Lee-Carter Panel Sieve (MLCPS). We are interested in estimating the relationship between populations of similar socioeconomic conditions. The empirical results show that the MLCPS approach works well in the presence of dependence.

Suggested Citation

  • Valeria D’Amato & Steven Haberman & Gabriella Piscopo & Maria Russolillo & Lorenzo Trapani, 2014. "Detecting Common Longevity Trends by a Multiple Population Approach," North American Actuarial Journal, Taylor & Francis Journals, vol. 18(1), pages 139-149.
  • Handle: RePEc:taf:uaajxx:v:18:y:2014:i:1:p:139-149
    DOI: 10.1080/10920277.2013.875884
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/10920277.2013.875884
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/10920277.2013.875884?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Leng, Xuan & Peng, Liang, 2016. "Inference pitfalls in Lee–Carter model for forecasting mortality," Insurance: Mathematics and Economics, Elsevier, vol. 70(C), pages 58-65.
    2. Blake, David & Cairns, Andrew J.G., 2021. "Longevity risk and capital markets: The 2019-20 update," Insurance: Mathematics and Economics, Elsevier, vol. 99(C), pages 395-439.
    3. Blake, David & El Karoui, Nicole & Loisel, Stéphane & MacMinn, Richard, 2018. "Longevity risk and capital markets: The 2015–16 update," Insurance: Mathematics and Economics, Elsevier, vol. 78(C), pages 157-173.
    4. Jorge M. Uribe & Helena Chuliá & Montserrat Guillen, 2018. "Trends in the Quantiles of the Life Table Survivorship Function," European Journal of Population, Springer;European Association for Population Studies, vol. 34(5), pages 793-817, December.
    5. Liu, Yanxin & Li, Johnny Siu-Hang, 2016. "It’s all in the hidden states: A longevity hedging strategy with an explicit measure of population basis risk," Insurance: Mathematics and Economics, Elsevier, vol. 70(C), pages 301-319.
    6. de Jong, Piet & Tickle, Leonie & Xu, Jianhui, 2016. "Coherent modeling of male and female mortality using Lee–Carter in a complex number framework," Insurance: Mathematics and Economics, Elsevier, vol. 71(C), pages 130-137.
    7. Tim J. Boonen & Hong Li, 2017. "Modeling and Forecasting Mortality With Economic Growth: A Multipopulation Approach," Demography, Springer;Population Association of America (PAA), vol. 54(5), pages 1921-1946, October.
    8. Bozikas, Apostolos & Pitselis, Georgios, 2020. "Incorporating crossed classification credibility into the Lee–Carter model for multi-population mortality data," Insurance: Mathematics and Economics, Elsevier, vol. 93(C), pages 353-368.
    9. Massimiliano Menzietti & Maria Francesca Morabito & Manuela Stranges, 2019. "Mortality Projections for Small Populations: An Application to the Maltese Elderly," Risks, MDPI, vol. 7(2), pages 1-25, March.
    10. Helena Chuliá & Montserrat Guillén & Jorge M. Uribe, 2015. "Mortality and Longevity Risks in the United Kingdom: Dynamic Factor Models and Copula-Functions," Working Papers 2015-03, Universitat de Barcelona, UB Riskcenter.
    11. Mercedes Ayuso & Jorge M. Bravo & Robert Holzmann & Edward Palmer, 2021. "Automatic Indexation of the Pension Age to Life Expectancy: When Policy Design Matters," Risks, MDPI, vol. 9(5), pages 1-28, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:uaajxx:v:18:y:2014:i:1:p:139-149. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/uaaj .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.