IDEAS home Printed from https://ideas.repec.org/a/spr/qualqt/v53y2019i2d10.1007_s11135-018-0792-8.html
   My bibliography  Save this article

Extremal properties of the Theil and Gini measures of inequality

Author

Listed:
  • Bogdan Oancea

    (University of Bucharest)

  • Dan Pirjol

    (H. Hulubei Institute of Nuclear Physics and Engineering)

Abstract

Two popular inequality measures used in the study of income and wealth distributions are the Gini (G) and Theil (T) indices. Several bounds on these inequality measures are available when only partial information about the distribution is available. However the correlation between them has been less studied. We derive the allowed region for the joint values of (G, T), for both continuous and discrete distributions. This has the form of a lower bound for T at given G. There is no corresponding upper bound, and T can be made as large as desired for given G by choosing an appropriate form of the Lorenz curve. We illustrate the bound for several parametric models of income distribution and Lorenz curves frequently used in the income distribution literature.

Suggested Citation

  • Bogdan Oancea & Dan Pirjol, 2019. "Extremal properties of the Theil and Gini measures of inequality," Quality & Quantity: International Journal of Methodology, Springer, vol. 53(2), pages 859-869, March.
  • Handle: RePEc:spr:qualqt:v:53:y:2019:i:2:d:10.1007_s11135-018-0792-8
    DOI: 10.1007/s11135-018-0792-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11135-018-0792-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11135-018-0792-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Frank A. Cowell & Emmanuel Flachaire, 2014. "Statistical Methods for Distributional Analysis," Working Papers halshs-01115996, HAL.
    2. Ryu, Hang K., 1993. "Maximum entropy estimation of density and regression functions," Journal of Econometrics, Elsevier, vol. 56(3), pages 397-440, April.
    3. Gastwirth, Joseph L, 1972. "The Estimation of the Lorenz Curve and Gini Index," The Review of Economics and Statistics, MIT Press, vol. 54(3), pages 306-316, August.
    4. Yong Tao & Xiangjun Wu & Tao Zhou & Weibo Yan & Yanyuxiang Huang & Han Yu & Benedict Mondal & Victor M. Yakovenko, 2019. "Exponential structure of income inequality: evidence from 67 countries," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 14(2), pages 345-376, June.
    5. Gastwirth, Joseph L., 1975. "The estimation of a family of measures of economic inequality," Journal of Econometrics, Elsevier, vol. 3(1), pages 61-70, February.
    6. Roy Cerqueti & Marcel Ausloos, 2015. "Statistical assessment of regional wealth inequalities: the Italian case," Quality & Quantity: International Journal of Methodology, Springer, vol. 49(6), pages 2307-2323, November.
    7. Kunihiro Kimura, 1994. "A micro-macro linkage in the measurement of inequality: Another look at the Gini coefficient," Quality & Quantity: International Journal of Methodology, Springer, vol. 28(1), pages 83-97, February.
    8. Atkinson, Anthony B., 1970. "On the measurement of inequality," Journal of Economic Theory, Elsevier, vol. 2(3), pages 244-263, September.
    9. Holm, Juhani, 1993. "Maximum entropy Lorenz curves," Journal of Econometrics, Elsevier, vol. 59(3), pages 377-389, October.
    10. Oancea, Bogdan & Andrei, Tudorel & Pirjol, Dan, 2017. "Income inequality in Romania: The exponential-Pareto distribution," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 469(C), pages 486-498.
    11. Gupta, Manash Ranjan, 1984. "Functional Form for Estimating the Lorenz Curve," Econometrica, Econometric Society, vol. 52(5), pages 1313-1314, September.
    12. Thomas, Vinod & Wang, Yan & Fan, Xibo, 2001. "Measuring education inequality - Gini coefficients of education," Policy Research Working Paper Series 2525, The World Bank.
    13. Lieven Wittebolle & Massimo Marzorati & Lieven Clement & Annalisa Balloi & Daniele Daffonchio & Kim Heylen & Paul De Vos & Willy Verstraete & Nico Boon, 2009. "Initial community evenness favours functionality under selective stress," Nature, Nature, vol. 458(7238), pages 623-626, April.
    14. A.B. Atkinson & F. Bourguignon (ed.), 2000. "Handbook of Income Distribution," Handbook of Income Distribution, Elsevier, edition 1, volume 1, number 1.
    15. Hang Keun Ryu, 2008. "Maximum Entropy Estimation of Income Distributions from Bonferroni Indices," Economic Studies in Inequality, Social Exclusion, and Well-Being, in: Duangkamon Chotikapanich (ed.), Modeling Income Distributions and Lorenz Curves, chapter 10, pages 193-210, Springer.
    16. Nino Pereira & Patricia Salinas, 1978. "A relation between the Gini and Elteto measures of inequality," Quality & Quantity: International Journal of Methodology, Springer, vol. 12(2), pages 175-178, June.
    17. Chotikapanich, Duangkamon, 1993. "A comparison of alternative functional forms for the Lorenz curve," Economics Letters, Elsevier, vol. 41(2), pages 129-138.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Vytaras Brazauskas & Francesca Greselin & Ričardas Zitikis, 2024. "Measuring income inequality via percentile relativities," Quality & Quantity: International Journal of Methodology, Springer, vol. 58(5), pages 4859-4896, October.
    2. Xia, Yin-Shuang & Sun, Lu-Xuan & Feng, Chao, 2022. "What causes spatial inequalities of low-carbon development in China's transport sector? A newly proposed meta-frontier DEA-based decomposition approach," Socio-Economic Planning Sciences, Elsevier, vol. 80(C).
    3. Yang Liu & Joseph L. Gastwirth, 2020. "On the capacity of the Gini index to represent income distributions," METRON, Springer;Sapienza Università di Roma, vol. 78(1), pages 61-69, April.
    4. Cinaroglu, Songul, 2024. "Trends in out-of-pocket health expenditure inequality in Turkey under comprehensive health reforms," World Development Perspectives, Elsevier, vol. 34(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Khosravi Tanak, A. & Mohtashami Borzadaran, G.R. & Ahmadi, Jafar, 2018. "New functional forms of Lorenz curves by maximizing Tsallis entropy of income share function under the constraint on generalized Gini index," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 511(C), pages 280-288.
    2. Satya Paul & Sriram Shankar, 2020. "An alternative single parameter functional form for Lorenz curve," Empirical Economics, Springer, vol. 59(3), pages 1393-1402, September.
    3. WANG, Zuxiang & SMYTH, Russell & NG, Yew-Kwang, 2009. "A new ordered family of Lorenz curves with an application to measuring income inequality and poverty in rural China," China Economic Review, Elsevier, vol. 20(2), pages 218-235, June.
    4. Miguel Sordo & Jorge Navarro & José Sarabia, 2014. "Distorted Lorenz curves: models and comparisons," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 42(4), pages 761-780, April.
    5. Louis Mesnard, 2022. "About some difficulties with the functional forms of Lorenz curves," The Journal of Economic Inequality, Springer;Society for the Study of Economic Inequality, vol. 20(4), pages 939-950, December.
    6. Sarabia, J. -M. & Castillo, Enrique & Slottje, Daniel J., 1999. "An ordered family of Lorenz curves," Journal of Econometrics, Elsevier, vol. 91(1), pages 43-60, July.
    7. Gholamreza Hajargasht & William E. Griffiths, 2016. "Inference for Lorenz Curves," Department of Economics - Working Papers Series 2022, The University of Melbourne.
    8. ZuXiang Wang & Yew-Kwang Ng & Russell Smyth, 2007. "Revisiting The Ordered Family Of Lorenz Curves," Monash Economics Working Papers 19-07, Monash University, Department of Economics.
    9. Fischer, Thomas & Lundtofte, Frederik, 2020. "Unequal returns: Using the Atkinson index to measure financial risk," Journal of Banking & Finance, Elsevier, vol. 116(C).
    10. Johan Fellman, 2021. "Empirical Analyses of Income: Finland (2009) and Australia (1967-1968)," Journal of Statistical and Econometric Methods, SCIENPRESS Ltd, vol. 10(1), pages 1-3.
    11. Francesco Andreoli & Claudio Zoli, 2020. "From unidimensional to multidimensional inequality: a review," METRON, Springer;Sapienza Università di Roma, vol. 78(1), pages 5-42, April.
    12. Shyamal K. De & Bhargab Chattopadhyay, 2017. "Minimum Risk Point Estimation of Gini Index," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 79(2), pages 247-277, November.
    13. Sarabia Alegría, J.M & Pascual Sáez, Marta, 2001. "Rankings de distribuciones de renta basados en curvas de Lorenz ordenadas: un estudio empírico1," Estudios de Economia Aplicada, Estudios de Economia Aplicada, vol. 19, pages 151-169, Diciembre.
    14. Sarabia, José María & Gómez-Déniz, Emilio & Sarabia, María & Prieto, Faustino, 2010. "A general method for generating parametric Lorenz and Leimkuhler curves," Journal of Informetrics, Elsevier, vol. 4(4), pages 524-539.
    15. Alfred Ultsch & Jörn Lötsch, 2017. "A data science based standardized Gini index as a Lorenz dominance preserving measure of the inequality of distributions," PLOS ONE, Public Library of Science, vol. 12(8), pages 1-15, August.
    16. Pinkovskiy, Maxim L., 2013. "World welfare is rising: Estimation using nonparametric bounds on welfare measures," Journal of Public Economics, Elsevier, vol. 97(C), pages 176-195.
    17. Safari, Muhammad Aslam Mohd & Masseran, Nurulkamal & Ibrahim, Kamarulzaman & Hussain, Saiful Izzuan, 2021. "Measuring income inequality: A robust semi-parametric approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 562(C).
    18. Safari, Muhammad Aslam Mohd & Masseran, Nurulkamal & Ibrahim, Kamarulzaman, 2018. "A robust semi-parametric approach for measuring income inequality in Malaysia," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 1-13.
    19. Ryu, Hang Keun, 2013. "A bottom poor sensitive Gini coefficient and maximum entropy estimation of income distributions," Economics Letters, Elsevier, vol. 118(2), pages 370-374.
    20. Anwar Shaikh, 2018. "Some Universal Patterns in Income Distribution: An Econophysics Approach," Working Papers 1808, New School for Social Research, Department of Economics.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:qualqt:v:53:y:2019:i:2:d:10.1007_s11135-018-0792-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.