IDEAS home Printed from https://ideas.repec.org/a/spr/joecin/v20y2022i4d10.1007_s10888-022-09542-w.html
   My bibliography  Save this article

About some difficulties with the functional forms of Lorenz curves

Author

Listed:
  • Louis Mesnard

    (Univ. Bourgogne Franche-Comte, CREGO (EA 7317))

Abstract

We study to what extent some functional form assumption on the Lorenz curve are amenable to calculating headcount poverty, or poverty threshold, the key concept to determine a poverty index. The difficulties in calculating it have been underestimated. We must choose some functional forms for the Lorenz concentration curve. We examine three families of one-parameter functional forms to estimate Lorenz curves: power (elementary and Pareto), exponential (elementary and Gupta) and fractional (Rohde). Computing these numerical functions may be difficult and impose some restrictions on their domain of definition, may impose to use some numerical approximation methods. The elementary power and exponential forms are not a problem. However, Pareto raises the problem of a restricted domain of definition for its parameters. The exponential form of Gupta leads to a Lambert function that poses multiple problems, including a restricted field of definition. The fractional form of Rohde has also a restricted domain of definition. It is probably time to choose functional forms not only according to their ability to fit the data, but also according to their ability to calculate poverty indices.

Suggested Citation

  • Louis Mesnard, 2022. "About some difficulties with the functional forms of Lorenz curves," The Journal of Economic Inequality, Springer;Society for the Study of Economic Inequality, vol. 20(4), pages 939-950, December.
  • Handle: RePEc:spr:joecin:v:20:y:2022:i:4:d:10.1007_s10888-022-09542-w
    DOI: 10.1007/s10888-022-09542-w
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10888-022-09542-w
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10888-022-09542-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Foster, James & Greer, Joel & Thorbecke, Erik, 1984. "A Class of Decomposable Poverty Measures," Econometrica, Econometric Society, vol. 52(3), pages 761-766, May.
    2. Kakwani, N C & Podder, N, 1973. "On the Estimation of Lorenz Curves from Grouped Observations," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 14(2), pages 278-292, June.
    3. Rossi, Jose W., 1985. "Notes on a new functional form for the Lorenz curve," Economics Letters, Elsevier, vol. 17(1-2), pages 193-197.
    4. repec:bla:revinw:v:37:y:1991:i:4:p:447-52 is not listed on IDEAS
    5. Buhong Zheng, 2002. "Testing Lorenz Curves with Non-Simple Random Samples," Econometrica, Econometric Society, vol. 70(3), pages 1235-1243, May.
    6. Gastwirth, Joseph L, 1972. "The Estimation of the Lorenz Curve and Gini Index," The Review of Economics and Statistics, MIT Press, vol. 54(3), pages 306-316, August.
    7. Gastwirth, Joseph L, 1971. "A General Definition of the Lorenz Curve," Econometrica, Econometric Society, vol. 39(6), pages 1037-1039, November.
    8. Rohde, Nicholas, 2009. "An alternative functional form for estimating the Lorenz curve," Economics Letters, Elsevier, vol. 105(1), pages 61-63, October.
    9. Paul D. Thistle & John P. Formby, 1988. "On One Parameter Functional Forms for Lorenz Curves," Eastern Economic Journal, Eastern Economic Association, vol. 14(1), pages 81-85, Jan-Mar.
    10. Sen, Amartya K, 1976. "Poverty: An Ordinal Approach to Measurement," Econometrica, Econometric Society, vol. 44(2), pages 219-231, March.
    11. P. Ortega & G. Martín & A. Fernández & M. Ladoux & A. García, 1991. "A New Functional Form For Estimating Lorenz Curves," Review of Income and Wealth, International Association for Research in Income and Wealth, vol. 37(4), pages 447-452, December.
    12. François Bourguignon & Satya R. Chakravarty, 2019. "The Measurement of Multidimensional Poverty," Themes in Economics, in: Satya R. Chakravarty (ed.), Poverty, Social Exclusion and Stochastic Dominance, pages 83-107, Springer.
    13. Atkinson, Anthony B., 1970. "On the measurement of inequality," Journal of Economic Theory, Elsevier, vol. 2(3), pages 244-263, September.
    14. Ogwang, Tomson & Rao, U. L. Gouranga, 2000. "Hybrid models of the Lorenz curve," Economics Letters, Elsevier, vol. 69(1), pages 39-44, October.
    15. Johan Fellman, 2012. "Estimation of Gini coefficients using Lorenz curves," Journal of Statistical and Econometric Methods, SCIENPRESS Ltd, vol. 1(2), pages 1-3.
    16. Kakwani, Nanak C, 1977. "Applications of Lorenz Curves in Economic Analysis," Econometrica, Econometric Society, vol. 45(3), pages 719-727, April.
    17. Reed, William J., 2003. "The Pareto law of incomes—an explanation and an extension," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 319(C), pages 469-486.
    18. Gupta, Manash Ranjan, 1984. "Functional Form for Estimating the Lorenz Curve," Econometrica, Econometric Society, vol. 52(5), pages 1313-1314, September.
    19. Kakwani, Nanak C & Podder, N, 1976. "Efficient Estimation of the Lorenz Curve and Associated Inequality Measures from Grouped Observations," Econometrica, Econometric Society, vol. 44(1), pages 137-148, January.
    20. Donaldson, David & Weymark, John A., 1980. "A single-parameter generalization of the Gini indices of inequality," Journal of Economic Theory, Elsevier, vol. 22(1), pages 67-86, February.
    21. repec:bla:econom:v:50:y:1983:i:197:p:3-17 is not listed on IDEAS
    22. Kwang Soo Cheong, 2002. "An empirical comparison of alternative functional forms for the Lorenz curve," Applied Economics Letters, Taylor & Francis Journals, vol. 9(3), pages 171-176.
    23. Wilfling, Bernd & Kramer, Walter, 1993. "The Lorenz-ordering of Singh-Maddala income distributions," Economics Letters, Elsevier, vol. 43(1), pages 53-57.
    24. Chotikapanich, Duangkamon, 1993. "A comparison of alternative functional forms for the Lorenz curve," Economics Letters, Elsevier, vol. 41(2), pages 129-138.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pauliuk, Stefan, 2024. "Decent living standards, prosperity, and excessive consumption in the Lorenz curve," Ecological Economics, Elsevier, vol. 220(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. WANG, Zuxiang & SMYTH, Russell & NG, Yew-Kwang, 2009. "A new ordered family of Lorenz curves with an application to measuring income inequality and poverty in rural China," China Economic Review, Elsevier, vol. 20(2), pages 218-235, June.
    2. Johan Fellman, 2021. "Empirical Analyses of Income: Finland (2009) and Australia (1967-1968)," Journal of Statistical and Econometric Methods, SCIENPRESS Ltd, vol. 10(1), pages 1-3.
    3. Miguel Sordo & Jorge Navarro & José Sarabia, 2014. "Distorted Lorenz curves: models and comparisons," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 42(4), pages 761-780, April.
    4. ZuXiang Wang & Yew-Kwang Ng & Russell Smyth, 2007. "Revisiting The Ordered Family Of Lorenz Curves," Monash Economics Working Papers 19-07, Monash University, Department of Economics.
    5. Sarabia, José María & Gómez-Déniz, Emilio & Sarabia, María & Prieto, Faustino, 2010. "A general method for generating parametric Lorenz and Leimkuhler curves," Journal of Informetrics, Elsevier, vol. 4(4), pages 524-539.
    6. Gholamreza Hajargasht & William E. Griffiths, 2016. "Inference for Lorenz Curves," Department of Economics - Working Papers Series 2022, The University of Melbourne.
    7. Thitithep Sitthiyot & Kanyarat Holasut, 2021. "A simple method for estimating the Lorenz curve," Palgrave Communications, Palgrave Macmillan, vol. 8(1), pages 1-9, December.
    8. Satya Paul & Sriram Shankar, 2020. "An alternative single parameter functional form for Lorenz curve," Empirical Economics, Springer, vol. 59(3), pages 1393-1402, September.
    9. Khosravi Tanak, A. & Mohtashami Borzadaran, G.R. & Ahmadi, Jafar, 2018. "New functional forms of Lorenz curves by maximizing Tsallis entropy of income share function under the constraint on generalized Gini index," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 511(C), pages 280-288.
    10. Enora Belz, 2019. "Estimating Inequality Measures from Quantile Data," Working Papers halshs-02320110, HAL.
    11. Wang, ZuXiang & Smyth, Russell, 2015. "A hybrid method for creating Lorenz curves," Economics Letters, Elsevier, vol. 133(C), pages 59-63.
    12. Wang, Yuanjun & You, Shibing, 2016. "An alternative method for modeling the size distribution of top wealth," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 457(C), pages 443-453.
    13. Enora Belz, 2019. "Estimating Inequality Measures from Quantile Data," Economics Working Paper Archive (University of Rennes & University of Caen) 2019-09, Center for Research in Economics and Management (CREM), University of Rennes, University of Caen and CNRS.
    14. Florent Bresson, 2010. "A general class of inequality elasticities of poverty," The Journal of Economic Inequality, Springer;Society for the Study of Economic Inequality, vol. 8(1), pages 71-100, March.
    15. Sarabia, J. -M. & Castillo, Enrique & Slottje, Daniel J., 1999. "An ordered family of Lorenz curves," Journal of Econometrics, Elsevier, vol. 91(1), pages 43-60, July.
    16. Thitithep Sitthiyot & Kanyarat Holasut, 2023. "A universal model for the Lorenz curve with novel applications for datasets containing zeros and/or exhibiting extreme inequality," Papers 2304.13934, arXiv.org.
    17. Melanie Krause, 2014. "Parametric Lorenz Curves and the Modality of the Income Density Function," Review of Income and Wealth, International Association for Research in Income and Wealth, vol. 60(4), pages 905-929, December.
    18. Ogwang, Tomson & Gouranga Rao, U. L., 1996. "A new functional form for approximating the Lorenz curve," Economics Letters, Elsevier, vol. 52(1), pages 21-29, July.
    19. Kwang Soo Cheong, 1999. "A Comparison of Alternative Functional Forms For Parametric Estimation of the Lorenz Curve," Working Papers 199902, University of Hawaii at Manoa, Department of Economics.
    20. Kleiber, Christian, 2005. "The Lorenz curve in economics and econometrics," Technical Reports 2005,30, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joecin:v:20:y:2022:i:4:d:10.1007_s10888-022-09542-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.