IDEAS home Printed from https://ideas.repec.org/a/spr/qualqt/v47y2013i2p775-790.html
   My bibliography  Save this article

Two applications of the Points-of-View model to subject variations in sorting data

Author

Listed:
  • David Bimler

Abstract

In many of the social sciences it is useful to explore the “working models” or mental schemata that people use to organise items from some cognitive or perceptual domain. With an increasing number of items, versions of the Method of Sorting become important techniques for collecting data about inter-item similarities. Because people do not necessarily all bring the same mental model to the items, there is also the prospect that sorting data can identify a range within the population of interest, or even distinct subgroups. Anthropology provides one tool for this purpose in the form of Cultural Consensus Analysis (CCA). CCA itself proves to be a special case of the “Points of View” approach. Here factor analysis is applied to the subjects’ method-of-sorting responses, obtaining idealized or prototypal modes of organising the items—the “viewpoints”. These idealised modes account for each subject’s data by combining them in proportions given by the subject’s factor loadings. The separate organisation represented by each viewpoint can be made explicit with clustering or multidimensional scaling. The technique is illustrated with job-sorting data from occupational research, and social-network data from primate behaviour. Copyright Springer Science+Business Media B.V. 2013

Suggested Citation

  • David Bimler, 2013. "Two applications of the Points-of-View model to subject variations in sorting data," Quality & Quantity: International Journal of Methodology, Springer, vol. 47(2), pages 775-790, February.
  • Handle: RePEc:spr:qualqt:v:47:y:2013:i:2:p:775-790
    DOI: 10.1007/s11135-011-9552-8
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11135-011-9552-8
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11135-011-9552-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Stephen Johnson, 1967. "Hierarchical clustering schemes," Psychometrika, Springer;The Psychometric Society, vol. 32(3), pages 241-254, September.
    2. John Ross, 1966. "A remark on tucker and Messick's “points of view” analysis," Psychometrika, Springer;The Psychometric Society, vol. 31(1), pages 27-31, March.
    3. Anthony Coxon & Charles Jones, 1974. "Occupational similarities: Subjective aspects of social stratification," Quality & Quantity: International Journal of Methodology, Springer, vol. 8(2), pages 139-158, June.
    4. Ledyard Tucker & Samuel Messick, 1963. "An individual differences model for multidimensional scaling," Psychometrika, Springer;The Psychometric Society, vol. 28(4), pages 333-367, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zita Oravecz & Royce Anders & William Batchelder, 2015. "Hierarchical Bayesian Modeling for Test Theory Without an Answer Key," Psychometrika, Springer;The Psychometric Society, vol. 80(2), pages 341-364, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Giuseppe Bove & Akinori Okada, 2018. "Methods for the analysis of asymmetric pairwise relationships," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 12(1), pages 5-31, March.
    2. Jacqueline Meulman & Peter Verboon, 1993. "Points of view analysis revisited: Fitting multidimensional structures to optimal distance components with cluster restrictions on the variables," Psychometrika, Springer;The Psychometric Society, vol. 58(1), pages 7-35, March.
    3. Simon Blanchard & Daniel Aloise & Wayne DeSarbo, 2012. "The Heterogeneous P-Median Problem for Categorization Based Clustering," Psychometrika, Springer;The Psychometric Society, vol. 77(4), pages 741-762, October.
    4. Katarzyna Hampel & Paulina Ucieklak-Jez & Agnieszka Bem, 2021. "Health System Responsiveness in the Light of the Euro Health Consumer Index," European Research Studies Journal, European Research Studies Journal, vol. 0(4B), pages 659-667.
    5. Kim, Junyung & Shah, Asad Ullah Amin & Kang, Hyun Gook, 2020. "Dynamic risk assessment with bayesian network and clustering analysis," Reliability Engineering and System Safety, Elsevier, vol. 201(C).
    6. David G Mets & Michael S Brainard, 2018. "An automated approach to the quantitation of vocalizations and vocal learning in the songbird," PLOS Computational Biology, Public Library of Science, vol. 14(8), pages 1-29, August.
    7. Noah E. Friedkin, 1984. "Structural Cohesion and Equivalence Explanations of Social Homogeneity," Sociological Methods & Research, , vol. 12(3), pages 235-261, February.
    8. David Matesanz Gomez & Guillermo J. Ortega & Benno Torgler, 2011. "Measuring globalization: A hierarchical network approach," CREMA Working Paper Series 2011-11, Center for Research in Economics, Management and the Arts (CREMA).
    9. Balepur, Prashant Narayan, 1998. "Impacts of Computer-Mediated Communication on Travel and Communication Patterns: The Davis Community Network Study," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt6cb1f85c, Institute of Transportation Studies, UC Berkeley.
    10. Lisa Price, 2001. "Demystifying farmers' entomological and pest management knowledge: A methodology for assessing the impacts on knowledge from IPM-FFS and NES interventions," Agriculture and Human Values, Springer;The Agriculture, Food, & Human Values Society (AFHVS), vol. 18(2), pages 153-176, June.
    11. Elisa Frutos-Bernal & Ángel Martín del Rey & Irene Mariñas-Collado & María Teresa Santos-Martín, 2022. "An Analysis of Travel Patterns in Barcelona Metro Using Tucker3 Decomposition," Mathematics, MDPI, vol. 10(7), pages 1-17, March.
    12. Geert Soete & Wayne DeSarbo & J. Carroll, 1985. "Optimal variable weighting for hierarchical clustering: An alternating least-squares algorithm," Journal of Classification, Springer;The Classification Society, vol. 2(1), pages 173-192, December.
    13. Teh, Boon Kin & Goo, Yik Wen & Lian, Tong Wei & Ong, Wei Guang & Choi, Wen Ting & Damodaran, Mridula & Cheong, Siew Ann, 2015. "The Chinese Correction of February 2007: How financial hierarchies change in a market crash," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 424(C), pages 225-241.
    14. Yoshio Takane & Forrest Young & Jan Leeuw, 1977. "Nonmetric individual differences multidimensional scaling: An alternating least squares method with optimal scaling features," Psychometrika, Springer;The Psychometric Society, vol. 42(1), pages 7-67, March.
    15. Wentao Qu & Xianchao Xiu & Huangyue Chen & Lingchen Kong, 2023. "A Survey on High-Dimensional Subspace Clustering," Mathematics, MDPI, vol. 11(2), pages 1-39, January.
    16. Taggart, J. H., 1999. "MNC subsidiary performance, risk, and corporate expectations," International Business Review, Elsevier, vol. 8(2), pages 233-255, April.
    17. Sorin Alexandru Ungureanu & Diana Andreea Mandricel & Bogdan Ioan Coculescu & Ionica Oncioiu, 2020. "Prevention in Dental Medicine. Case Studies and Explanations Regarding the Cost-Benefit Ratio," Academic Journal of Economic Studies, Faculty of Finance, Banking and Accountancy Bucharest,"Dimitrie Cantemir" Christian University Bucharest, vol. 6(2), pages 135-147, June.
    18. Fang, Yixin & Wang, Junhui, 2011. "Penalized cluster analysis with applications to family data," Computational Statistics & Data Analysis, Elsevier, vol. 55(6), pages 2128-2136, June.
    19. Simon Blanchard & Wayne DeSarbo, 2013. "A New Zero-Inflated Negative Binomial Methodology for Latent Category Identification," Psychometrika, Springer;The Psychometric Society, vol. 78(2), pages 322-340, April.
    20. Satoru Yokoyama & Atsuho Nakayama & Akinori Okada, 2009. "One-mode three-way overlapping cluster analysis," Computational Statistics, Springer, vol. 24(1), pages 165-179, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:qualqt:v:47:y:2013:i:2:p:775-790. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.