IDEAS home Printed from https://ideas.repec.org/a/spr/pubtra/v10y2018i2d10.1007_s12469-018-0184-4.html
   My bibliography  Save this article

Using Twitter data for transit performance assessment: a framework for evaluating transit riders’ opinions about quality of service

Author

Listed:
  • N. Nima Haghighi

    (University of Utah)

  • Xiaoyue Cathy Liu

    (University of Utah)

  • Ran Wei

    (University of California at Riverside)

  • Wenwen Li

    (Arizona State University)

  • Hu Shao

    (Arizona State University)

Abstract

Social media platforms such as Facebook, Instagram, and Twitter have drastically altered the way information is generated and disseminated. These platforms allow their users to report events and express their opinions toward these events. The profusion of data generated through social media has proved to have the potential for improving the efficiency of existing traffic management systems and transportation analytics. This study complements existing literature by proposing a framework to evaluate transit riders’ opinion about quality of transit service using Twitter data. Although previous studies used keyword search to extract transit-related tweets, the extracted tweets can still be noisy and might not be relevant to transit quality of service at all. In this study, we leverage topic modeling, an unsupervised machine learning technique, to sift tweets that are relevant to the actual user experience of the transit system. Sentiment analysis is further performed based on the tweet-per-topic index we developed, to gauge transit riders’ feedback and explore the underlying reasons causing their dissatisfaction on the service. This framework can be potentially quite useful to transit agencies for user-oriented analysis and to assist with investment decision making.

Suggested Citation

  • N. Nima Haghighi & Xiaoyue Cathy Liu & Ran Wei & Wenwen Li & Hu Shao, 2018. "Using Twitter data for transit performance assessment: a framework for evaluating transit riders’ opinions about quality of service," Public Transport, Springer, vol. 10(2), pages 363-377, August.
  • Handle: RePEc:spr:pubtra:v:10:y:2018:i:2:d:10.1007_s12469-018-0184-4
    DOI: 10.1007/s12469-018-0184-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s12469-018-0184-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s12469-018-0184-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wei, Ran & Liu, Xiaoyue & Mu, Yongjian & Wang, Liming & Golub, Aaron & Farber, Steven, 2017. "Evaluating public transit services for operational efficiency and access equity," Journal of Transport Geography, Elsevier, vol. 65(C), pages 70-79.
    2. Grün, Bettina & Hornik, Kurt, 2011. "topicmodels: An R Package for Fitting Topic Models," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 40(i13).
    3. Kaplan, Andreas M. & Haenlein, Michael, 2010. "Users of the world, unite! The challenges and opportunities of Social Media," Business Horizons, Elsevier, vol. 53(1), pages 59-68, January.
    4. Lisa Schweitzer, 2014. "Planning and Social Media: A Case Study of Public Transit and Stigma on Twitter," Journal of the American Planning Association, Taylor & Francis Journals, vol. 80(3), pages 218-238, July.
    5. Nuno Barreira & Pedro Godinho & Paulo Melo, 2013. "Nowcasting unemployment rate and new car sales in south-western Europe with Google Trends," Netnomics, Springer, vol. 14(3), pages 129-165, November.
    6. Jacques Bughin, 2015. "Google searches and twitter mood: nowcasting telecom sales performance," Netnomics, Springer, vol. 16(1), pages 87-105, August.
    7. Fayyaz, S. Kiavash & Liu, Xiaoyue Cathy & Porter, Richard J., 2017. "Dynamic transit accessibility and transit gap causality analysis," Journal of Transport Geography, Elsevier, vol. 59(C), pages 27-39.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Irina Wedel & Michael Palk & Stefan Voß, 2022. "A Bilingual Comparison of Sentiment and Topics for a Product Event on Twitter," Information Systems Frontiers, Springer, vol. 24(5), pages 1635-1646, October.
    2. Shuli Luo & Sylvia Y He, 2021. "Using data mining to explore the spatial and temporal dynamics of perceptions of metro services in China: The case of Shenzhen," Environment and Planning B, , vol. 48(3), pages 449-466, March.
    3. Dibya Nandan Mishra & Rajeev Kumar Panda, 2023. "Decoding customer experiences in rail transport service: application of hybrid sentiment analysis," Public Transport, Springer, vol. 15(1), pages 31-60, March.
    4. Mohammad Masoud Rahimi & Elham Naghizade & Mark Stevenson & Stephan Winter, 2023. "SentiHawkes: a sentiment-aware Hawkes point process to model service quality of public transport using Twitter data," Public Transport, Springer, vol. 15(2), pages 343-376, June.
    5. Amirali Soltanpour & Mahmoud Mesbah & Meeghat Habibian, 2020. "Customer satisfaction in urban rail: a study on transferability of structural equation models," Public Transport, Springer, vol. 12(1), pages 123-146, March.
    6. Wenwen Zhang & Camille Barchers & Janille Smith-Colin, 2023. "Transit communication via Twitter during the COVID-19 pandemic," Environment and Planning B, , vol. 50(5), pages 1244-1261, June.
    7. Liping Ge & Stefan Voß & Lin Xie, 2022. "Robustness and disturbances in public transport," Public Transport, Springer, vol. 14(1), pages 191-261, March.
    8. Eldeeb, Gamal & Sears, Sean & Mohamed, Moataz, 2023. "What do users want from transit? Qualitative analysis of current and potential users' perceptions," Transportation Research Part A: Policy and Practice, Elsevier, vol. 171(C).
    9. Tasnim M. A. Zayet & Maizatul Akmar Ismail & Kasturi Dewi Varathan & Rafidah M. D. Noor & Hui Na Chua & Angela Lee & Yeh Ching Low & Sheena Kaur Jaswant Singh, 2021. "Investigating transportation research based on social media analysis: a systematic mapping review," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(8), pages 6383-6421, August.
    10. Liping Ge & Malek Sarhani & Stefan Voß & Lin Xie, 2021. "Review of Transit Data Sources: Potentials, Challenges and Complementarity," Sustainability, MDPI, vol. 13(20), pages 1-37, October.
    11. Shaojie Liu & Jing Teng & Yue Gong, 2020. "Extraction Method and Integration Framework for Perception Features of Public Opinion in Transportation," Sustainability, MDPI, vol. 13(1), pages 1-17, December.
    12. Martin Zajac & Jiří Horák & Joaquín Osorio-Arjona & Pavel Kukuliač & James Haworth, 2022. "Public Transport Tweets in London, Madrid and Prague in the COVID-19 Period—Temporal and Spatial Differences in Activity Topics," Sustainability, MDPI, vol. 14(24), pages 1-25, December.
    13. Luo, Shuli & He, Sylvia Y. & Grant-Muller, Susan & Song, Linqi, 2023. "Influential factors in customer satisfaction of transit services: Using crowdsourced data to capture the heterogeneity across individuals, space and time," Transport Policy, Elsevier, vol. 131(C), pages 173-183.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Schaer, Oliver & Kourentzes, Nikolaos & Fildes, Robert, 2019. "Demand forecasting with user-generated online information," International Journal of Forecasting, Elsevier, vol. 35(1), pages 197-212.
    2. Blasco-Arcas, Lorena & Lee, Hsin-Hsuan Meg & Kastanakis, Minas N. & Alcañiz, Mariano & Reyes-Menendez, Ana, 2022. "The role of consumer data in marketing: A research agenda," Journal of Business Research, Elsevier, vol. 146(C), pages 436-452.
    3. Shuli Luo & Sylvia Y He, 2021. "Using data mining to explore the spatial and temporal dynamics of perceptions of metro services in China: The case of Shenzhen," Environment and Planning B, , vol. 48(3), pages 449-466, March.
    4. Luo, Shuli & He, Sylvia Y., 2021. "Understanding gender difference in perceptions toward transit services across space and time: A social media mining approach," Transport Policy, Elsevier, vol. 111(C), pages 63-73.
    5. Caroline Ardelet & Bérangère Brial, 2011. "Influence des recommandations d'internautes: le role de la presence sociale et de l'expertise," Post-Print hal-01258971, HAL.
    6. Fan, Rui & Xu, Ke & Zhao, Jichang, 2018. "An agent-based model for emotion contagion and competition in online social media," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 495(C), pages 245-259.
    7. Oscar Calvo-Gonz'alez & Axel Eizmendi & Germ'an Reyes, 2022. "The Shifting Attention of Political Leaders: Evidence from Two Centuries of Presidential Speeches," Papers 2209.00540, arXiv.org, revised Jun 2023.
    8. T.H.A.S.H. Niranjala, 2020. "Factors Influencing Towards the Adoption of Social Media Marketing in SMEs (References to Small and Medium scale Enterprises in Anuradhapura, Sri Lanka)," International Journal of Research and Innovation in Social Science, International Journal of Research and Innovation in Social Science (IJRISS), vol. 4(6), pages 540-548, June.
    9. Nour El Houda Ben Amor & Mohamed Nabil Mzoughi, 2023. "Do Millennials’ Motives for Using Snapchat Influence the Effectiveness of Snap Ads?," SAGE Open, , vol. 13(3), pages 21582440231, July.
    10. Majumdar, Adrija & Bose, Indranil, 2019. "Do tweets create value? A multi-period analysis of Twitter use and content of tweets for manufacturing firms," International Journal of Production Economics, Elsevier, vol. 216(C), pages 1-11.
    11. Schmidt, Christoph G. & Wuttke, David A. & Heese, H. Sebastian & Wagner, Stephan M., 2023. "Antecedents of public reactions to supply chain glitches," International Journal of Production Economics, Elsevier, vol. 259(C).
    12. Marta Götz & Małgorzata Bartosik-Purgat & Barbara Jankowska, 2018. "International Aspects and Challenges of Digital Transformation," Gospodarka Narodowa. The Polish Journal of Economics, Warsaw School of Economics, issue 1, pages 87-102.
    13. Ladhari, Riadh & Massa, Elodie & Skandrani, Hamida, 2020. "YouTube vloggers’ popularity and influence: The roles of homophily, emotional attachment, and expertise," Journal of Retailing and Consumer Services, Elsevier, vol. 54(C).
    14. Mohammad Awad AlAfnan, 2024. "Social Media Personalities in Asia: Demographics, Platform Preferences, and Behavior Based Analysis," Studies in Media and Communication, Redfame publishing, vol. 12(3), pages 349-363, September.
    15. Mahan, Joseph E. & Seo, Won Jae & Jordan, Jeremy S. & Funk, Daniel, 2015. "Exploring the impact of social networking sites on running involvement, running behavior, and social life satisfaction," Sport Management Review, Elsevier, vol. 18(2), pages 182-192.
    16. Grygiel, Jennifer & Brown, Nina, 2019. "Are social media companies motivated to be good corporate citizens? Examination of the connection between corporate social responsibility and social media safety," Telecommunications Policy, Elsevier, vol. 43(5), pages 445-460.
    17. Molina, Arturo & Fernández, Alejandra C. & Gómez, Mar & Aranda, Evangelina, 2017. "Differences in the city branding of European capitals based on online vs. offline sources of information," Tourism Management, Elsevier, vol. 58(C), pages 28-39.
    18. Christian Bartelheimer & Philipp Heiden & Hedda Lüttenberg & Daniel Beverungen, 2022. "Systematizing the lexicon of platforms in information systems: a data-driven study," Electronic Markets, Springer;IIM University of St. Gallen, vol. 32(1), pages 375-396, March.
    19. Carmela Milano, 2015. "Democratization or else vulgarization of cultural capital? The role of social networks in theater’s audience behavior," Working Papers CEB 15-004, ULB -- Universite Libre de Bruxelles.
    20. Som Sekhar Bhattacharyya & Sumi Jha, 2020. "Explicating micro foundations of corporate social responsibility: a moderated-mediation study of customer, investor and employee roles," International Journal of Ethics and Systems, Emerald Group Publishing Limited, vol. 36(4), pages 619-640, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:pubtra:v:10:y:2018:i:2:d:10.1007_s12469-018-0184-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.