IDEAS home Printed from https://ideas.repec.org/a/spr/pubtra/v11y2019i1d10.1007_s12469-019-00200-5.html
   My bibliography  Save this article

Transit network design with pollution minimization

Author

Listed:
  • Javier Duran

    (Universidad de Concepción)

  • Lorena Pradenas

    (Universidad de Concepción)

  • Victor Parada

    (Universidad de Santiago de Chile)

Abstract

A critical step in the design of urban transport networks is the determination of the routes and the frequencies of buses. This situation entails a highly combinatorial optimization problem with a complex computational solution, even for small instances. Several studies have addressed such a situation, minimizing travel times as the main objective. However, the growing trend toward the development of sustainable transport operations requires that the design of the network also considers the emissions of toxic gases that result from combustion, which leads to a new variant of this type of problem, called the pollution transit network design problem. In this paper, the problem is formulated as a biobjective mathematical programming model. Complex problem instances are proposed for this problem, and by using a multi-objective genetic algorithm, we approach the unimodal and bimodal version of the problem by taking into account the elastic demand between buses and cars. By using the proposed mathematical programming model and the genetic algorithm for small and large problem instances, respectively, we show that the generated pollutant emissions are drastically reduced without increasing travel times or costs.

Suggested Citation

  • Javier Duran & Lorena Pradenas & Victor Parada, 2019. "Transit network design with pollution minimization," Public Transport, Springer, vol. 11(1), pages 189-210, June.
  • Handle: RePEc:spr:pubtra:v:11:y:2019:i:1:d:10.1007_s12469-019-00200-5
    DOI: 10.1007/s12469-019-00200-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s12469-019-00200-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s12469-019-00200-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Arbex, Renato Oliveira & da Cunha, Claudio Barbieri, 2015. "Efficient transit network design and frequencies setting multi-objective optimization by alternating objective genetic algorithm," Transportation Research Part B: Methodological, Elsevier, vol. 81(P2), pages 355-376.
    2. Spiess, Heinz & Florian, Michael, 1989. "Optimal strategies: A new assignment model for transit networks," Transportation Research Part B: Methodological, Elsevier, vol. 23(2), pages 83-102, April.
    3. Johanna Camargo Pérez & Martha Carrillo & Jairo Montoya-Torres, 2015. "Multi-criteria approaches for urban passenger transport systems: a literature review," Annals of Operations Research, Springer, vol. 226(1), pages 69-87, March.
    4. Elnaz Miandoabchi & Reza Farahani & Wout Dullaert & W. Szeto, 2012. "Hybrid Evolutionary Metaheuristics for Concurrent Multi-Objective Design of Urban Road and Public Transit Networks," Networks and Spatial Economics, Springer, vol. 12(3), pages 441-480, September.
    5. T. L. Magnanti & R. T. Wong, 1984. "Network Design and Transportation Planning: Models and Algorithms," Transportation Science, INFORMS, vol. 18(1), pages 1-55, February.
    6. Farahani, Reza Zanjirani & Miandoabchi, Elnaz & Szeto, W.Y. & Rashidi, Hannaneh, 2013. "A review of urban transportation network design problems," European Journal of Operational Research, Elsevier, vol. 229(2), pages 281-302.
    7. Jin Y. Yen, 1971. "Finding the K Shortest Loopless Paths in a Network," Management Science, INFORMS, vol. 17(11), pages 712-716, July.
    8. Demir, Emrah & Bektaş, Tolga & Laporte, Gilbert, 2014. "A review of recent research on green road freight transportation," European Journal of Operational Research, Elsevier, vol. 237(3), pages 775-793.
    9. G. F. Newell, 1979. "Some Issues Relating to the Optimal Design of Bus Routes," Transportation Science, INFORMS, vol. 13(1), pages 20-35, February.
    10. Mandl, Christoph E., 1980. "Evaluation and optimization of urban public transportation networks," European Journal of Operational Research, Elsevier, vol. 5(6), pages 396-404, December.
    11. Abdelkader Sbihi & Richard Eglese, 2010. "Combinatorial optimization and Green Logistics," Annals of Operations Research, Springer, vol. 175(1), pages 159-175, March.
    12. Quentin K. Wan & Hong K. Lo, 2009. "Congested multimodal transit network design," Public Transport, Springer, vol. 1(3), pages 233-251, August.
    13. Ralf Borndörfer & Martin Grötschel & Marc E. Pfetsch, 2007. "A Column-Generation Approach to Line Planning in Public Transport," Transportation Science, INFORMS, vol. 41(1), pages 123-132, February.
    14. Manuel Sanchez & Lorena Pradenas & Jean-Christophe Deschamps & Victor Parada, 2016. "Reducing the carbon footprint in a vehicle routing problem by pooling resources from different companies," Netnomics, Springer, vol. 17(1), pages 29-45, July.
    15. Pternea, Moschoula & Kepaptsoglou, Konstantinos & Karlaftis, Matthew G., 2015. "Sustainable urban transit network design," Transportation Research Part A: Policy and Practice, Elsevier, vol. 77(C), pages 276-291.
    16. Asadi Bagloee, Saeed & Ceder, Avishai (Avi), 2011. "Transit-network design methodology for actual-size road networks," Transportation Research Part B: Methodological, Elsevier, vol. 45(10), pages 1787-1804.
    17. Cancela, Héctor & Mauttone, Antonio & Urquhart, María E., 2015. "Mathematical programming formulations for transit network design," Transportation Research Part B: Methodological, Elsevier, vol. 77(C), pages 17-37.
    18. David Canca & Alicia De-Los-Santos & Gilbert Laporte & Juan A. Mesa, 2016. "A general rapid network design, line planning and fleet investment integrated model," Annals of Operations Research, Springer, vol. 246(1), pages 127-144, November.
    19. Luis Cadarso & Ángel Marín, 2017. "Improved rapid transit network design model: considering transfer effects," Annals of Operations Research, Springer, vol. 258(2), pages 547-567, November.
    20. Guihaire, Valérie & Hao, Jin-Kao, 2008. "Transit network design and scheduling: A global review," Transportation Research Part A: Policy and Practice, Elsevier, vol. 42(10), pages 1251-1273, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Christina Iliopoulou & Konstantinos Kepaptsoglou & Eleni Vlahogianni, 2019. "Metaheuristics for the transit route network design problem: a review and comparative analysis," Public Transport, Springer, vol. 11(3), pages 487-521, October.
    2. Javier Durán-Micco & Pieter Vansteenwegen, 2022. "A survey on the transit network design and frequency setting problem," Public Transport, Springer, vol. 14(1), pages 155-190, March.
    3. Philipp Heyken Soares, 2021. "Zone-based public transport route optimisation in an urban network," Public Transport, Springer, vol. 13(1), pages 197-231, March.
    4. Cervantes-Sanmiguel, K.I. & Chavez-Hernandez, M.V. & Ibarra-Rojas, O.J., 2023. "Analyzing the trade-off between minimizing travel times and reducing monetary costs for users in the transit network design," Transportation Research Part B: Methodological, Elsevier, vol. 173(C), pages 142-161.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Javier Durán-Micco & Pieter Vansteenwegen, 2022. "A survey on the transit network design and frequency setting problem," Public Transport, Springer, vol. 14(1), pages 155-190, March.
    2. Duran-Micco, Javier & Vermeir, Evert & Vansteenwegen, Pieter, 2020. "Considering emissions in the transit network design and frequency setting problem with a heterogeneous fleet," European Journal of Operational Research, Elsevier, vol. 282(2), pages 580-592.
    3. Pierre-Léo Bourbonnais & Catherine Morency & Martin Trépanier & Éric Martel-Poliquin, 2021. "Transit network design using a genetic algorithm with integrated road network and disaggregated O–D demand data," Transportation, Springer, vol. 48(1), pages 95-130, February.
    4. Arbex, Renato Oliveira & da Cunha, Claudio Barbieri, 2015. "Efficient transit network design and frequencies setting multi-objective optimization by alternating objective genetic algorithm," Transportation Research Part B: Methodological, Elsevier, vol. 81(P2), pages 355-376.
    5. Ahern, Zeke & Paz, Alexander & Corry, Paul, 2022. "Approximate multi-objective optimization for integrated bus route design and service frequency setting," Transportation Research Part B: Methodological, Elsevier, vol. 155(C), pages 1-25.
    6. Christina Iliopoulou & Konstantinos Kepaptsoglou & Eleni Vlahogianni, 2019. "Metaheuristics for the transit route network design problem: a review and comparative analysis," Public Transport, Springer, vol. 11(3), pages 487-521, October.
    7. Cancela, Héctor & Mauttone, Antonio & Urquhart, María E., 2015. "Mathematical programming formulations for transit network design," Transportation Research Part B: Methodological, Elsevier, vol. 77(C), pages 17-37.
    8. Philipp Heyken Soares, 2021. "Zone-based public transport route optimisation in an urban network," Public Transport, Springer, vol. 13(1), pages 197-231, March.
    9. Amirali Zarrinmehr & Mahmoud Saffarzadeh & Seyedehsan Seyedabrishami & Yu Marco Nie, 2016. "A path-based greedy algorithm for multi-objective transit routes design with elastic demand," Public Transport, Springer, vol. 8(2), pages 261-293, September.
    10. Farahani, Reza Zanjirani & Miandoabchi, Elnaz & Szeto, W.Y. & Rashidi, Hannaneh, 2013. "A review of urban transportation network design problems," European Journal of Operational Research, Elsevier, vol. 229(2), pages 281-302.
    11. Ren, Hualing & Song, Yingjie & Long, Jiancheng & Si, Bingfeng, 2021. "A new transit assignment model based on line and node strategies," Transportation Research Part B: Methodological, Elsevier, vol. 150(C), pages 121-142.
    12. Jose L. Walteros & Andrés L. Medaglia & Germán Riaño, 2015. "Hybrid Algorithm for Route Design on Bus Rapid Transit Systems," Transportation Science, INFORMS, vol. 49(1), pages 66-84, February.
    13. Ahmed, Leena & Mumford, Christine & Kheiri, Ahmed, 2019. "Solving urban transit route design problem using selection hyper-heuristics," European Journal of Operational Research, Elsevier, vol. 274(2), pages 545-559.
    14. Mohsen Momenitabar & Jeremy Mattson, 2021. "A Multi-Objective Meta-Heuristic Approach to Improve the Bus Transit Network: A Case Study of Fargo-Moorhead Area," Sustainability, MDPI, vol. 13(19), pages 1-25, September.
    15. Abdulkerim Benli & İbrahim Akgün, 2023. "A Multi-Objective Mathematical Programming Model for Transit Network Design and Frequency Setting Problem," Mathematics, MDPI, vol. 11(21), pages 1-23, October.
    16. David Canca & Belén Navarro-Carmona & Gabriel Villa & Alejandro Zarzo, 2023. "A Multilayer Network Approach for the Bimodal Bus–Pedestrian Line Planning Problem," Mathematics, MDPI, vol. 11(19), pages 1-36, October.
    17. Feng, Tao & Lusby, Richard M. & Zhang, Yongxiang & Peng, Qiyuan, 2024. "Integrating train service route design with passenger flow allocation for an urban rail transit line," European Journal of Operational Research, Elsevier, vol. 313(1), pages 146-170.
    18. Schiewe, Alexander & Schiewe, Philine & Schmidt, Marie, 2019. "The line planning routing game," European Journal of Operational Research, Elsevier, vol. 274(2), pages 560-573.
    19. Cervantes-Sanmiguel, K.I. & Chavez-Hernandez, M.V. & Ibarra-Rojas, O.J., 2023. "Analyzing the trade-off between minimizing travel times and reducing monetary costs for users in the transit network design," Transportation Research Part B: Methodological, Elsevier, vol. 173(C), pages 142-161.
    20. Liu, Jiangtao & Zhou, Xuesong, 2016. "Capacitated transit service network design with boundedly rational agents," Transportation Research Part B: Methodological, Elsevier, vol. 93(PA), pages 225-250.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:pubtra:v:11:y:2019:i:1:d:10.1007_s12469-019-00200-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.