IDEAS home Printed from https://ideas.repec.org/a/inm/orijoc/v36y2024i6p1459-1480.html
   My bibliography  Save this article

Path-Based Formulations for the Design of On-demand Multimodal Transit Systems with Adoption Awareness

Author

Listed:
  • Hongzhao Guan

    (H. Milton Stewart School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, Georgia 30345)

  • Beste Basciftci

    (Department of Business Analytics, Tippie College of Business, University of Iowa, Iowa City, Iowa 52242)

  • Pascal Van Hentenryck

    (H. Milton Stewart School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, Georgia 30345)

Abstract

This paper reconsiders the On-Demand Multimodal Transit Systems (ODMTS) Design with Adoptions problem (ODMTS-DA) to capture the latent demand in on-demand multimodal transit systems. The ODMTS-DA is a bilevel optimization problem, for which Basciftci and Van Hentenryck proposed an exact combinatorial Benders decomposition. Unfortunately, their proposed algorithm only finds high-quality solutions for medium-sized cities and is not practical for large metropolitan areas. The main contribution of this paper is to propose a new path-based optimization model, called P-P ath , to address these computational difficulties. The key idea underlying P-P ath is to enumerate two specific sets of paths which capture the essence of the choice model associated with the adoption behavior of riders. With the help of these path sets, the ODMTS-DA can be formulated as a single-level mixed-integer programming model. In addition, the paper presents preprocessing techniques that can reduce the size of the model significantly. P-P ath is evaluated on two comprehensive case studies: the midsize transit system of the Ann Arbor – Ypsilanti region in Michigan (which was studied by Basciftci and Van Hentenryck) and the large-scale transit system for the city of Atlanta. The experimental results show that P-P ath solves the Michigan ODMTS-DA instances in a few minutes, bringing more than two orders of magnitude improvements compared with the existing approach. For Atlanta, the results show that P-P ath can solve large-scale ODMTS-DA instances (about 17 millions variables and 37 millions constraints) optimally in a few hours or in a few days. These results show the tremendous computational benefits of P-P ath which provides a scalable approach to the design of on-demand multimodal transit systems with latent demand.

Suggested Citation

  • Hongzhao Guan & Beste Basciftci & Pascal Van Hentenryck, 2024. "Path-Based Formulations for the Design of On-demand Multimodal Transit Systems with Adoption Awareness," INFORMS Journal on Computing, INFORMS, vol. 36(6), pages 1459-1480, December.
  • Handle: RePEc:inm:orijoc:v:36:y:2024:i:6:p:1459-1480
    DOI: 10.1287/ijoc.2023.0014
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/ijoc.2023.0014
    Download Restriction: no

    File URL: https://libkey.io/10.1287/ijoc.2023.0014?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Patrice Marcotte & Anne Mercier & Gilles Savard & Vedat Verter, 2009. "Toll Policies for Mitigating Hazardous Materials Transport Risk," Transportation Science, INFORMS, vol. 43(2), pages 228-243, May.
    2. Goerigk, Marc & Schmidt, Marie, 2017. "Line planning with user-optimal route choice," European Journal of Operational Research, Elsevier, vol. 259(2), pages 424-436.
    3. Liu, Yining & Ouyang, Yanfeng, 2021. "Mobility service design via joint optimization of transit networks and demand-responsive services," Transportation Research Part B: Methodological, Elsevier, vol. 151(C), pages 22-41.
    4. Shaheen, Susan PhD & Chan, Nelson, 2016. "Mobility and the Sharing Economy: Potential to Overcome First- and Last-Mile Public Transit Connections," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt8042k3d7, Institute of Transportation Studies, UC Berkeley.
    5. Arthur Mahéo & Philip Kilby & Pascal Van Hentenryck, 2019. "Benders Decomposition for the Design of a Hub and Shuttle Public Transit System," Service Science, INFORMS, vol. 53(1), pages 77-88, February.
    6. Farahani, Reza Zanjirani & Miandoabchi, Elnaz & Szeto, W.Y. & Rashidi, Hannaneh, 2013. "A review of urban transportation network design problems," European Journal of Operational Research, Elsevier, vol. 229(2), pages 281-302.
    7. Jin Y. Yen, 1971. "Finding the K Shortest Loopless Paths in a Network," Management Science, INFORMS, vol. 17(11), pages 712-716, July.
    8. Hongzhao Guan & Beste Basciftci & Pascal Van Hentenryck, 2024. "Path-Based Formulations for the Design of On-demand Multimodal Transit Systems with Adoption Awareness," INFORMS Journal on Computing, INFORMS, vol. 36(6), pages 1459-1480, December.
    9. Calvete, Herminia I. & Galé, Carmen & Iranzo, José A., 2014. "Planning of a decentralized distribution network using bilevel optimization," Omega, Elsevier, vol. 49(C), pages 30-41.
    10. Ralf Borndörfer & Martin Grötschel & Marc E. Pfetsch, 2007. "A Column-Generation Approach to Line Planning in Public Transport," Transportation Science, INFORMS, vol. 41(1), pages 123-132, February.
    11. Michael J. Klier & Knut Haase, 2008. "Line Optimization in Public Transport Systems," Operations Research Proceedings, in: Jörg Kalcsics & Stefan Nickel (ed.), Operations Research Proceedings 2007, pages 473-478, Springer.
    12. Naga V. C. Gudapati & Enrico Malaguti & Michele Monaci, 2022. "Network Design with Service Requirements: Scaling-up the Size of Solvable Problems," INFORMS Journal on Computing, INFORMS, vol. 34(5), pages 2571-2582, September.
    13. David Canca & Alicia De-Los-Santos & Gilbert Laporte & Juan A. Mesa, 2016. "A general rapid network design, line planning and fleet investment integrated model," Annals of Operations Research, Springer, vol. 246(1), pages 127-144, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hongzhao Guan & Beste Basciftci & Pascal Van Hentenryck, 2024. "Path-Based Formulations for the Design of On-demand Multimodal Transit Systems with Adoption Awareness," INFORMS Journal on Computing, INFORMS, vol. 36(6), pages 1459-1480, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Javier Duran & Lorena Pradenas & Victor Parada, 2019. "Transit network design with pollution minimization," Public Transport, Springer, vol. 11(1), pages 189-210, June.
    2. Duran-Micco, Javier & Vermeir, Evert & Vansteenwegen, Pieter, 2020. "Considering emissions in the transit network design and frequency setting problem with a heterogeneous fleet," European Journal of Operational Research, Elsevier, vol. 282(2), pages 580-592.
    3. Feng, Tao & Lusby, Richard M. & Zhang, Yongxiang & Peng, Qiyuan, 2024. "Integrating train service route design with passenger flow allocation for an urban rail transit line," European Journal of Operational Research, Elsevier, vol. 313(1), pages 146-170.
    4. Konrad Steiner & Stefan Irnich, 2018. "Strategic Planning for Integrated Mobility-on-Demand and Urban Public Bus Networks," Working Papers 1819, Gutenberg School of Management and Economics, Johannes Gutenberg-Universität Mainz.
    5. Evert Vermeir & Javier Durán-Micco & Pieter Vansteenwegen, 2022. "The grid based approach, a fast local evaluation technique for line planning," 4OR, Springer, vol. 20(4), pages 603-635, December.
    6. Yao, Zhiyuan & Nie, Lei & Fu, Huiling, 2024. "Railway line planning with passenger routing: Direct-service network representations and a two-phase solution approach," Transportation Research Part B: Methodological, Elsevier, vol. 186(C).
    7. Javier Durán-Micco & Pieter Vansteenwegen, 2022. "A survey on the transit network design and frequency setting problem," Public Transport, Springer, vol. 14(1), pages 155-190, March.
    8. Schiewe, Alexander & Schiewe, Philine & Schmidt, Marie, 2019. "The line planning routing game," European Journal of Operational Research, Elsevier, vol. 274(2), pages 560-573.
    9. David Canca & Belén Navarro-Carmona & Gabriel Villa & Alejandro Zarzo, 2023. "A Multilayer Network Approach for the Bimodal Bus–Pedestrian Line Planning Problem," Mathematics, MDPI, vol. 11(19), pages 1-36, October.
    10. Ahern, Zeke & Paz, Alexander & Corry, Paul, 2022. "Approximate multi-objective optimization for integrated bus route design and service frequency setting," Transportation Research Part B: Methodological, Elsevier, vol. 155(C), pages 1-25.
    11. Masing, Berenike & Lindner, Niels & Borndörfer, Ralf, 2022. "The price of symmetric line plans in the Parametric City," Transportation Research Part B: Methodological, Elsevier, vol. 166(C), pages 419-443.
    12. Goerigk, Marc & Schmidt, Marie, 2017. "Line planning with user-optimal route choice," European Journal of Operational Research, Elsevier, vol. 259(2), pages 424-436.
    13. Canca, David & De-Los-Santos, Alicia & Laporte, Gilbert & Mesa, Juan A., 2019. "Integrated Railway Rapid Transit Network Design and Line Planning problem with maximum profit," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 127(C), pages 1-30.
    14. Ren, Hualing & Song, Yingjie & Long, Jiancheng & Si, Bingfeng, 2021. "A new transit assignment model based on line and node strategies," Transportation Research Part B: Methodological, Elsevier, vol. 150(C), pages 121-142.
    15. Li, Guoyuan & Chen, Anthony, 2023. "Strategy-based transit stochastic user equilibrium model with capacity and number-of-transfers constraints," European Journal of Operational Research, Elsevier, vol. 305(1), pages 164-183.
    16. Jose L. Walteros & Andrés L. Medaglia & Germán Riaño, 2015. "Hybrid Algorithm for Route Design on Bus Rapid Transit Systems," Transportation Science, INFORMS, vol. 49(1), pages 66-84, February.
    17. Hemant Kumar Suman & Nomesh B. Bolia, 2019. "Mitigation of overcrowding in buses through bus planning," Public Transport, Springer, vol. 11(1), pages 159-187, June.
    18. Suman, Hemant K. & Bolia, Nomesh B., 2019. "Improvement in direct bus services through route planning," Transport Policy, Elsevier, vol. 81(C), pages 263-274.
    19. Philine Gattermann & Jonas Harbering & Anita Schöbel, 2017. "Line pool generation," Public Transport, Springer, vol. 9(1), pages 7-32, July.
    20. Tatsuki Yamauchi & Mizuyo Takamatsu & Shinji Imahori, 2023. "Optimizing train stopping patterns for congestion management," Public Transport, Springer, vol. 15(1), pages 1-29, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:orijoc:v:36:y:2024:i:6:p:1459-1480. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.