IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v14y2017i3p219-d91286.html
   My bibliography  Save this article

Network Analysis: A Novel Approach to Understand Suicidal Behaviour

Author

Listed:
  • Derek De Beurs

    (Netherlands Institute for Health Services Research (NIVEL), Otterstraat 118-124, 3513 CR Utrecht, The Netherlands)

Abstract

Although suicide is a major public health issue worldwide, we understand little of the onset and development of suicidal behaviour. Suicidal behaviour is argued to be the end result of the complex interaction between psychological, social and biological factors. Epidemiological studies resulted in a range of risk factors for suicidal behaviour, but we do not yet understand how their interaction increases the risk for suicidal behaviour. A new approach called network analysis can help us better understand this process as it allows us to visualize and quantify the complex association between many different symptoms or risk factors. A network analysis of data containing information on suicidal patients can help us understand how risk factors interact and how their interaction is related to suicidal thoughts and behaviour. A network perspective has been successfully applied to the field of depression and psychosis, but not yet to the field of suicidology. In this theoretical article, I will introduce the concept of network analysis to the field of suicide prevention, and offer directions for future applications and studies.

Suggested Citation

  • Derek De Beurs, 2017. "Network Analysis: A Novel Approach to Understand Suicidal Behaviour," IJERPH, MDPI, vol. 14(3), pages 1-8, February.
  • Handle: RePEc:gam:jijerp:v:14:y:2017:i:3:p:219-:d:91286
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/14/3/219/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/14/3/219/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Epskamp, Sacha & Cramer, Angélique O.J. & Waldorp, Lourens J. & Schmittmann, Verena D. & Borsboom, Denny, 2012. "qgraph: Network Visualizations of Relationships in Psychometric Data," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 48(i04).
    2. Maarten Bak & Marjan Drukker & Laila Hasmi & Jim van Os, 2016. "An n=1 Clinical Network Analysis of Symptoms and Treatment in Psychosis," PLOS ONE, Public Library of Science, vol. 11(9), pages 1-15, September.
    3. Berend Terluin & Michiel R de Boer & Henrica C W de Vet, 2016. "Differences in Connection Strength between Mental Symptoms Might Be Explained by Differences in Variance: Reanalysis of Network Data Did Not Confirm Staging," PLOS ONE, Public Library of Science, vol. 11(11), pages 1-12, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Inken Höller & Dajana Schreiber & Fionneke Bos & Thomas Forkmann & Tobias Teismann & Jürgen Margraf, 2022. "The Mereology of Depression—Networks of Depressive Symptoms during the Course of Psychotherapy," IJERPH, MDPI, vol. 19(12), pages 1-13, June.
    2. Oisín Ryan & Ellen L. Hamaker, 2022. "Time to Intervene: A Continuous-Time Approach to Network Analysis and Centrality," Psychometrika, Springer;The Psychometric Society, vol. 87(1), pages 214-252, March.
    3. Georgia Mangion & Melanie Simmonds-Buckley & Stephen Kellett & Peter Taylor & Amy Degnan & Charlotte Humphrey & Kate Freshwater & Marisa Poggioli & Cristina Fiorani, 2022. "Modelling Identity Disturbance: A Network Analysis of the Personality Structure Questionnaire (PSQ)," IJERPH, MDPI, vol. 19(21), pages 1-17, October.
    4. Xiao Yang & Nilam Ram & Scott D. Gest & David M. Lydon-Staley & David E. Conroy & Aaron L. Pincus & Peter C. M. Molenaar, 2018. "Socioemotional Dynamics of Emotion Regulation and Depressive Symptoms: A Person-Specific Network Approach," Complexity, Hindawi, vol. 2018, pages 1-14, November.
    5. Michael J. Brusco & Douglas Steinley & Ashley L. Watts, 2022. "Disentangling relationships in symptom networks using matrix permutation methods," Psychometrika, Springer;The Psychometric Society, vol. 87(1), pages 133-155, March.
    6. Denny Borsboom, 2022. "Possible Futures for Network Psychometrics," Psychometrika, Springer;The Psychometric Society, vol. 87(1), pages 253-265, March.
    7. Jayawickreme, Nuwan & Mootoo, Candace & Fountain, Christine & Rasmussen, Andrew & Jayawickreme, Eranda & Bertuccio, Rebecca F., 2017. "Post-conflict struggles as networks of problems: A network analysis of trauma, daily stressors and psychological distress among Sri Lankan war survivors," Social Science & Medicine, Elsevier, vol. 190(C), pages 119-132.
    8. Zhou, Jianhua & Zhang, Lulu & Gong, Xue, 2023. "Longitudinal network relations between symptoms of problematic internet game use and internalizing and externalizing problems among Chinese early adolescents," Social Science & Medicine, Elsevier, vol. 333(C).
    9. Mihail Halachev & Viktoria-Eleni Gountouna & Alison Meynert & Gannie Tzoneva & Alan R. Shuldiner & Colin A. Semple & James F. Wilson, 2024. "Regionally enriched rare deleterious exonic variants in the UK and Ireland," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    10. Yi-Lung Chen & Hsing-Ying Ho & Ray C. Hsiao & Wei-Hsin Lu & Cheng-Fang Yen, 2020. "Correlations between Quality of Life, School Bullying, and Suicide in Adolescents with Attention-Deficit Hyperactivity Disorder," IJERPH, MDPI, vol. 17(9), pages 1-12, May.
    11. Kan, Kees-Jan & van der Maas, Han L.J. & Levine, Stephen Z., 2019. "Extending psychometric network analysis: Empirical evidence against g in favor of mutualism?," Intelligence, Elsevier, vol. 73(C), pages 52-62.
    12. Knyspel, Jacob & Plomin, Robert, 2024. "Comparing factor and network models of cognitive abilities using twin data," Intelligence, Elsevier, vol. 104(C).
    13. Sacha Epskamp, 2020. "Psychometric network models from time-series and panel data," Psychometrika, Springer;The Psychometric Society, vol. 85(1), pages 206-231, March.
    14. de Boer, Nina Sofie, 2020. "Exploring the Long-Term Health Consequences of ADHD using a Multivariable Mendelian Randomization Network Approach," Thesis Commons c4wz5, Center for Open Science.
    15. Don Watson & Manfred Krug & Claus-Christian Carbon, 2022. "The relationship between citations and the linguistic traits of specific academic discourse communities identified by using social network analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(4), pages 1755-1781, April.
    16. Matt Crum & Nikhil Ram-Mohan & Michelle M Meyer, 2019. "Regulatory context drives conservation of glycine riboswitch aptamers," PLOS Computational Biology, Public Library of Science, vol. 15(12), pages 1-24, December.
    17. Shinsuke Ohnuki & Yoshikazu Ohya, 2018. "High-dimensional single-cell phenotyping reveals extensive haploinsufficiency," PLOS Biology, Public Library of Science, vol. 16(5), pages 1-23, May.
    18. Payton J. Jones & Patrick Mair & Thorsten Simon & Achim Zeileis, 2020. "Network Trees: A Method for Recursively Partitioning Covariance Structures," Psychometrika, Springer;The Psychometric Society, vol. 85(4), pages 926-945, December.
    19. Simon Foster & Meichun Mohler-Kuo, 2020. "The proportion of non-depressed subjects in a study sample strongly affects the results of psychometric analyses of depression symptoms," PLOS ONE, Public Library of Science, vol. 15(7), pages 1-13, July.
    20. Takehiko Ito, 2021. "The influence of psychological network on the willingness to communicate in a second language," PLOS ONE, Public Library of Science, vol. 16(9), pages 1-15, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:14:y:2017:i:3:p:219-:d:91286. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.