IDEAS home Printed from https://ideas.repec.org/a/spr/psycho/v82y2017i3d10.1007_s11336-017-9575-8.html
   My bibliography  Save this article

Sparse Exploratory Factor Analysis

Author

Listed:
  • Nickolay T. Trendafilov

    (Open University)

  • Sara Fontanella

    (Imperial College London)

  • Kohei Adachi

    (Osaka University)

Abstract

Sparse principal component analysis is a very active research area in the last decade. It produces component loadings with many zero entries which facilitates their interpretation and helps avoid redundant variables. The classic factor analysis is another popular dimension reduction technique which shares similar interpretation problems and could greatly benefit from sparse solutions. Unfortunately, there are very few works considering sparse versions of the classic factor analysis. Our goal is to contribute further in this direction. We revisit the most popular procedures for exploratory factor analysis, maximum likelihood and least squares. Sparse factor loadings are obtained for them by, first, adopting a special reparameterization and, second, by introducing additional $$\ell _1$$ ℓ 1 -norm penalties into the standard factor analysis problems. As a result, we propose sparse versions of the major factor analysis procedures. We illustrate the developed algorithms on well-known psychometric problems. Our sparse solutions are critically compared to ones obtained by other existing methods.

Suggested Citation

  • Nickolay T. Trendafilov & Sara Fontanella & Kohei Adachi, 2017. "Sparse Exploratory Factor Analysis," Psychometrika, Springer;The Psychometric Society, vol. 82(3), pages 778-794, September.
  • Handle: RePEc:spr:psycho:v:82:y:2017:i:3:d:10.1007_s11336-017-9575-8
    DOI: 10.1007/s11336-017-9575-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11336-017-9575-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11336-017-9575-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. repec:ucp:bkecon:9780226316529 is not listed on IDEAS
    2. Clemens Hage & Martin Kleinsteuber, 2014. "Robust PCA and subspace tracking from incomplete observations using $$\ell _0$$ ℓ 0 -surrogates," Computational Statistics, Springer, vol. 29(3), pages 467-487, June.
    3. Nickolay Trendafilov & Kohei Adachi, 2015. "Sparse Versus Simple Structure Loadings," Psychometrika, Springer;The Psychometric Society, vol. 80(3), pages 776-790, September.
    4. Nickolay Trendafilov, 2014. "From simple structure to sparse components: a review," Computational Statistics, Springer, vol. 29(3), pages 431-454, June.
    5. Trendafilov, Nickolay T. & Jolliffe, Ian T., 2006. "Projected gradient approach to the numerical solution of the SCoTLASS," Computational Statistics & Data Analysis, Elsevier, vol. 50(1), pages 242-253, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Elena Geminiani & Giampiero Marra & Irini Moustaki, 2021. "Single- and Multiple-Group Penalized Factor Analysis: A Trust-Region Algorithm Approach with Integrated Automatic Multiple Tuning Parameter Selection," Psychometrika, Springer;The Psychometric Society, vol. 86(1), pages 65-95, March.
    2. Shaobo Jin & Irini Moustaki & Fan Yang-Wallentin, 2018. "Approximated Penalized Maximum Likelihood for Exploratory Factor Analysis: An Orthogonal Case," Psychometrika, Springer;The Psychometric Society, vol. 83(3), pages 628-649, September.
    3. Lars Eldén & Nickolay Trendafilov, 2019. "Semi-sparse PCA," Psychometrika, Springer;The Psychometric Society, vol. 84(1), pages 164-185, March.
    4. Jin, Shaobo & Moustaki, Irini & Yang-Wallentin, Fan, 2018. "Approximated penalized maximum likelihood for exploratory factor analysis: an orthogonal case," LSE Research Online Documents on Economics 88118, London School of Economics and Political Science, LSE Library.
    5. Yoav Bergner & Peter Halpin & Jill-Jênn Vie, 2022. "Multidimensional Item Response Theory in the Style of Collaborative Filtering," Psychometrika, Springer;The Psychometric Society, vol. 87(1), pages 266-288, March.
    6. M. Perrot‐Dockès & C. Lévy‐Leduc & L. Rajjou, 2022. "Estimation of large block structured covariance matrices: Application to ‘multi‐omic’ approaches to study seed quality," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(1), pages 119-147, January.
    7. Kim, Nam-Hwui & Browne, Ryan P., 2021. "In the pursuit of sparseness: A new rank-preserving penalty for a finite mixture of factor analyzers," Computational Statistics & Data Analysis, Elsevier, vol. 160(C).
    8. Geminiani, Elena & Marra, Giampiero & Moustaki, Irini, 2021. "Single and multiple-group penalized factor analysis: a trust-region algorithm approach with integrated automatic multiple tuning parameter selection," LSE Research Online Documents on Economics 108873, London School of Economics and Political Science, LSE Library.
    9. Guangbao Guo & Chunjie Wei & Guoqi Qian, 2023. "Sparse online principal component analysis for parameter estimation in factor model," Computational Statistics, Springer, vol. 38(2), pages 1095-1116, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nickolay T. Trendafilov & Tsegay Gebrehiwot Gebru, 2016. "Recipes for sparse LDA of horizontal data," METRON, Springer;Sapienza Università di Roma, vol. 74(2), pages 207-221, August.
    2. Kohei Adachi & Nickolay T. Trendafilov, 2016. "Sparse principal component analysis subject to prespecified cardinality of loadings," Computational Statistics, Springer, vol. 31(4), pages 1403-1427, December.
    3. Nickolay Trendafilov & Martin Kleinsteuber & Hui Zou, 2014. "Sparse matrices in data analysis," Computational Statistics, Springer, vol. 29(3), pages 403-405, June.
    4. Rosember Guerra-Urzola & Katrijn Van Deun & Juan C. Vera & Klaas Sijtsma, 2021. "A Guide for Sparse PCA: Model Comparison and Applications," Psychometrika, Springer;The Psychometric Society, vol. 86(4), pages 893-919, December.
    5. Jin, Shaobo & Moustaki, Irini & Yang-Wallentin, Fan, 2018. "Approximated penalized maximum likelihood for exploratory factor analysis: an orthogonal case," LSE Research Online Documents on Economics 88118, London School of Economics and Political Science, LSE Library.
    6. Shaobo Jin & Irini Moustaki & Fan Yang-Wallentin, 2018. "Approximated Penalized Maximum Likelihood for Exploratory Factor Analysis: An Orthogonal Case," Psychometrika, Springer;The Psychometric Society, vol. 83(3), pages 628-649, September.
    7. Ikemoto, Hiroki & Adachi, Kohei, 2016. "Sparse Tucker2 analysis of three-way data subject to a constrained number of zero elements in a core array," Computational Statistics & Data Analysis, Elsevier, vol. 98(C), pages 1-18.
    8. Guerra Urzola, Rosember & Van Deun, Katrijn & Vera, J. C. & Sijtsma, K., 2021. "A guide for sparse PCA : Model comparison and applications," Other publications TiSEM 4d35b931-7f49-444b-b92f-a, Tilburg University, School of Economics and Management.
    9. Thomas Despois & Catherine Doz, 2022. "Identifying and interpreting the factors in factor models via sparsity : Different approaches," Working Papers halshs-03626503, HAL.
    10. Thomas Despois & Catherine Doz, 2023. "Identifying and interpreting the factors in factor models via sparsity: Different approaches," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 38(4), pages 533-555, June.
    11. Kohei Adachi & Nickolay T. Trendafilov, 2018. "Sparsest factor analysis for clustering variables: a matrix decomposition approach," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 12(3), pages 559-585, September.
    12. Trendafilov, Nickolay T., 2010. "Stepwise estimation of common principal components," Computational Statistics & Data Analysis, Elsevier, vol. 54(12), pages 3446-3457, December.
    13. Thomas Despois & Catherine Doz, 2022. "Identifying and interpreting the factors in factor models via sparsity : Different approaches," PSE Working Papers halshs-03626503, HAL.
    14. Yoav Bergner & Peter Halpin & Jill-Jênn Vie, 2022. "Multidimensional Item Response Theory in the Style of Collaborative Filtering," Psychometrika, Springer;The Psychometric Society, vol. 87(1), pages 266-288, March.
    15. Thomas Despois & Catherine Doz, 2021. "Identifying and interpreting the factors in factor models via sparsity: Different approaches," PSE Working Papers halshs-02235543, HAL.
    16. Trendafilov, Nickolay T. & Jolliffe, Ian T., 2007. "DALASS: Variable selection in discriminant analysis via the LASSO," Computational Statistics & Data Analysis, Elsevier, vol. 51(8), pages 3718-3736, May.
    17. Jolliffe, Ian, 2022. "A 50-year personal journey through time with principal component analysis," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
    18. Lê Cao Kim-Anh & Rossouw Debra & Robert-Granié Christèle & Besse Philippe, 2008. "A Sparse PLS for Variable Selection when Integrating Omics Data," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 7(1), pages 1-32, November.
    19. Qi, Xin & Luo, Ruiyan & Zhao, Hongyu, 2013. "Sparse principal component analysis by choice of norm," Journal of Multivariate Analysis, Elsevier, vol. 114(C), pages 127-160.
    20. Xin Qi & Ruiyan Luo, 2015. "Sparse Principal Component Analysis in Hilbert Space," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 42(1), pages 270-289, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:psycho:v:82:y:2017:i:3:d:10.1007_s11336-017-9575-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.