IDEAS home Printed from https://ideas.repec.org/a/spr/psycho/v83y2018i3d10.1007_s11336-018-9626-9.html
   My bibliography  Save this article

Model-Based Measures for Detecting and Quantifying Response Bias

Author

Listed:
  • R. Philip Chalmers

    (The University of Georgia)

Abstract

This paper proposes a model-based family of detection and quantification statistics to evaluate response bias in item bundles of any size. Compensatory (CDRF) and non-compensatory (NCDRF) response bias measures are proposed, along with their sample realizations and large-sample variability when models are fitted using multiple-group estimation. Based on the underlying connection to item response theory estimation methodology, it is argued that these new statistics provide a powerful and flexible approach to studying response bias for categorical response data over and above methods that have previously appeared in the literature. To evaluate their practical utility, CDRF and NCDRF are compared to the closely related SIBTEST family of statistics and likelihood-based detection methods through a series of Monte Carlo simulations. Results indicate that the new statistics are more optimal effect size estimates of marginal response bias than the SIBTEST family, are competitive with a selection of likelihood-based methods when studying item-level bias, and are the most optimal when studying differential bundle and test bias.

Suggested Citation

  • R. Philip Chalmers, 2018. "Model-Based Measures for Detecting and Quantifying Response Bias," Psychometrika, Springer;The Psychometric Society, vol. 83(3), pages 696-732, September.
  • Handle: RePEc:spr:psycho:v:83:y:2018:i:3:d:10.1007_s11336-018-9626-9
    DOI: 10.1007/s11336-018-9626-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11336-018-9626-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11336-018-9626-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. D. Oakes, 1999. "Direct calculation of the information matrix via the EM," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 61(2), pages 479-482, April.
    2. R. Bock & Murray Aitkin, 1981. "Marginal maximum likelihood estimation of item parameters: Application of an EM algorithm," Psychometrika, Springer;The Psychometric Society, vol. 46(4), pages 443-459, December.
    3. Louis Guttman, 1945. "A basis for analyzing test-retest reliability," Psychometrika, Springer;The Psychometric Society, vol. 10(4), pages 255-282, December.
    4. Chalmers, R. Philip, 2012. "mirt: A Multidimensional Item Response Theory Package for the R Environment," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 48(i06).
    5. Nambury Raju, 1988. "The area between two item characteristic curves," Psychometrika, Springer;The Psychometric Society, vol. 53(4), pages 495-502, December.
    6. Hsin-Hung Li & William Stout, 1996. "A new procedure for detection of crossing DIF," Psychometrika, Springer;The Psychometric Society, vol. 61(4), pages 647-677, December.
    7. Larry V. Hedges, 1981. "Distribution Theory for Glass's Estimator of Effect size and Related Estimators," Journal of Educational and Behavioral Statistics, , vol. 6(2), pages 107-128, June.
    8. David Thissen & Howard Wainer, 1990. "Confidence Envelopes for Item Response Theory," Journal of Educational and Behavioral Statistics, , vol. 15(2), pages 113-128, June.
    9. Hai Jiang & William Stout, 1998. "Improved Type I Error Control and Reduced Estimation Bias for DIF Detection Using SIBTEST," Journal of Educational and Behavioral Statistics, , vol. 23(4), pages 291-322, December.
    10. R. Philip Chalmers, 2018. "Improving the Crossing-SIBTEST Statistic for Detecting Non-uniform DIF," Psychometrika, Springer;The Psychometric Society, vol. 83(2), pages 376-386, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jeanne A. Teresi & Chun Wang & Marjorie Kleinman & Richard N. Jones & David J. Weiss, 2021. "Differential Item Functioning Analyses of the Patient-Reported Outcomes Measurement Information System (PROMIS®) Measures: Methods, Challenges, Advances, and Future Directions," Psychometrika, Springer;The Psychometric Society, vol. 86(3), pages 674-711, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Björn Andersson & Tao Xin, 2021. "Estimation of Latent Regression Item Response Theory Models Using a Second-Order Laplace Approximation," Journal of Educational and Behavioral Statistics, , vol. 46(2), pages 244-265, April.
    2. Felix Zimmer & Clemens Draxler & Rudolf Debelak, 2023. "Power Analysis for the Wald, LR, Score, and Gradient Tests in a Marginal Maximum Likelihood Framework: Applications in IRT," Psychometrika, Springer;The Psychometric Society, vol. 88(4), pages 1249-1298, December.
    3. R. Philip Chalmers, 2018. "Improving the Crossing-SIBTEST Statistic for Detecting Non-uniform DIF," Psychometrika, Springer;The Psychometric Society, vol. 83(2), pages 376-386, June.
    4. Melissa Gladstone & Gillian Lancaster & Gareth McCray & Vanessa Cavallera & Claudia R. L. Alves & Limbika Maliwichi & Muneera A. Rasheed & Tarun Dua & Magdalena Janus & Patricia Kariger, 2021. "Validation of the Infant and Young Child Development (IYCD) Indicators in Three Countries: Brazil, Malawi and Pakistan," IJERPH, MDPI, vol. 18(11), pages 1-19, June.
    5. W. Nicewander, 1990. "A latent-trait based reliability estimate and upper bound," Psychometrika, Springer;The Psychometric Society, vol. 55(1), pages 65-74, March.
    6. Yoav Bergner & Peter Halpin & Jill-Jênn Vie, 2022. "Multidimensional Item Response Theory in the Style of Collaborative Filtering," Psychometrika, Springer;The Psychometric Society, vol. 87(1), pages 266-288, March.
    7. Chanjin Zheng & Shaoyang Guo & Justin L Kern, 2021. "Fast Bayesian Estimation for the Four-Parameter Logistic Model (4PLM)," SAGE Open, , vol. 11(4), pages 21582440211, October.
    8. Alexander Robitzsch, 2021. "A Comprehensive Simulation Study of Estimation Methods for the Rasch Model," Stats, MDPI, vol. 4(4), pages 1-23, October.
    9. Yang Liu & Jan Hannig, 2017. "Generalized Fiducial Inference for Logistic Graded Response Models," Psychometrika, Springer;The Psychometric Society, vol. 82(4), pages 1097-1125, December.
    10. Isabel Gallego‐Alvarez & Eduardo Ortas & José Luis Vicente‐Villardón & Igor Álvarez Etxeberria, 2017. "Institutional Constraints, Stakeholder Pressure and Corporate Environmental Reporting Policies," Business Strategy and the Environment, Wiley Blackwell, vol. 26(6), pages 807-825, September.
    11. Scott Monroe, 2019. "Estimation of Expected Fisher Information for IRT Models," Journal of Educational and Behavioral Statistics, , vol. 44(4), pages 431-447, August.
    12. Yang Liu & Ji Seung Yang, 2018. "Bootstrap-Calibrated Interval Estimates for Latent Variable Scores in Item Response Theory," Psychometrika, Springer;The Psychometric Society, vol. 83(2), pages 333-354, June.
    13. Björn Andersson & Marie Wiberg, 2017. "Item Response Theory Observed-Score Kernel Equating," Psychometrika, Springer;The Psychometric Society, vol. 82(1), pages 48-66, March.
    14. Christopher J. Urban & Daniel J. Bauer, 2021. "A Deep Learning Algorithm for High-Dimensional Exploratory Item Factor Analysis," Psychometrika, Springer;The Psychometric Society, vol. 86(1), pages 1-29, March.
    15. Paul A. Jewsbury & Peter W. van Rijn, 2020. "IRT and MIRT Models for Item Parameter Estimation With Multidimensional Multistage Tests," Journal of Educational and Behavioral Statistics, , vol. 45(4), pages 383-402, August.
    16. Michela Battauz, 2023. "Testing for differences in chain equating," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 77(2), pages 134-145, May.
    17. Ting Wang & Carolin Strobl & Achim Zeileis & Edgar C. Merkle, 2018. "Score-Based Tests of Differential Item Functioning via Pairwise Maximum Likelihood Estimation," Psychometrika, Springer;The Psychometric Society, vol. 83(1), pages 132-155, March.
    18. Zhehan Jiang & Jonathan Templin, 2019. "Gibbs Samplers for Logistic Item Response Models via the Pólya–Gamma Distribution: A Computationally Efficient Data-Augmentation Strategy," Psychometrika, Springer;The Psychometric Society, vol. 84(2), pages 358-374, June.
    19. Sara Fernandes & Guillaume Fond & Xavier Zendjidjian & Pierre Michel & Karine Baumstarck & Christophe Lançon & Ludovic Samalin & Pierre-Michel Llorca & Magali Coldefy & Pascal Auquier & Laurent Boyer , 2022. "Development and Calibration of the PREMIUM Item Bank for Measuring Respect and Dignity for Patients with Severe Mental Illness," Post-Print hal-03649277, HAL.
    20. Yunxiao Chen & Xiaoou Li & Siliang Zhang, 2019. "Joint Maximum Likelihood Estimation for High-Dimensional Exploratory Item Factor Analysis," Psychometrika, Springer;The Psychometric Society, vol. 84(1), pages 124-146, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:psycho:v:83:y:2018:i:3:d:10.1007_s11336-018-9626-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.