IDEAS home Printed from https://ideas.repec.org/a/spr/advdac/v11y2017i2d10.1007_s11634-016-0249-7.html
   My bibliography  Save this article

Logistic biplot for nominal data

Author

Listed:
  • Julio César Hernández-Sánchez

    (Spanish Statistical Office)

  • José Luis Vicente-Villardón

    (University of Salamanca)

Abstract

Classical biplot methods allow for the simultaneous representation of individuals (rows) and variables (columns) of a data matrix. For binary data, logistic biplots have been recently developed. When data are nominal, both classical and binary logistic biplots are not adequate and techniques such as multiple correspondence analysis (MCA), latent trait analysis (LTA) or item response theory (IRT) for nominal items should be used instead. In this paper we extend the binary logistic biplot to nominal data. The resulting method is termed “nominal logistic biplot”(NLB), although the variables are represented as convex prediction regions rather than vectors. Using the methods from computational geometry, the set of prediction regions is converted to a set of points in such a way that the prediction for each individual is established by its closest “category point”. Then interpretation is based on distances rather than on projections. We study the geometry of such a representation and construct computational algorithms for the estimation of parameters and the calculation of prediction regions. Nominal logistic biplots extend both MCA and LTA in the sense that they give a graphical representation for LTA similar to the one obtained in MCA.

Suggested Citation

  • Julio César Hernández-Sánchez & José Luis Vicente-Villardón, 2017. "Logistic biplot for nominal data," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 11(2), pages 307-326, June.
  • Handle: RePEc:spr:advdac:v:11:y:2017:i:2:d:10.1007_s11634-016-0249-7
    DOI: 10.1007/s11634-016-0249-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11634-016-0249-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11634-016-0249-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. David Hartvigsen, 1992. "Recognizing Voronoi Diagrams with Linear Programming," INFORMS Journal on Computing, INFORMS, vol. 4(4), pages 369-374, November.
    2. R. Bock & Murray Aitkin, 1981. "Marginal maximum likelihood estimation of item parameters: Application of an EM algorithm," Psychometrika, Springer;The Psychometric Society, vol. 46(4), pages 443-459, December.
    3. Luca Scrucca, 2014. "Graphical tools for model-based mixture discriminant analysis," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 8(2), pages 147-165, June.
    4. Naoto Yamashita & Shin-ichi Mayekawa, 2015. "A new biplot procedure with joint classification of objects and variables by fuzzy c-means clustering," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 9(3), pages 243-266, September.
    5. de Leeuw, Jan, 2006. "Principal component analysis of binary data by iterated singular value decomposition," Computational Statistics & Data Analysis, Elsevier, vol. 50(1), pages 21-39, January.
    6. Patrick Groenen & Niël Roux & Sugnet Gardner-Lubbe, 2015. "Spline-based nonlinear biplots," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 9(2), pages 219-238, June.
    7. Purificacion Vicente Galindo & Teresa de Noronha Vaz & Peter Nijkamp, 2011. "Institutional Capacity to dynamically innovate: An Application to the Portuguese Case," Tinbergen Institute Discussion Papers 11-107/3, Tinbergen Institute.
    8. Bull, Shelley B. & Mak, Carmen & Greenwood, Celia M. T., 2002. "A modified score function estimator for multinomial logistic regression in small samples," Computational Statistics & Data Analysis, Elsevier, vol. 39(1), pages 57-74, March.
    9. Chalmers, R. Philip, 2012. "mirt: A Multidimensional Item Response Theory Package for the R Environment," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 48(i06).
    10. S. le Cessie & J. C. van Houwelingen, 1992. "Ridge Estimators in Logistic Regression," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 41(1), pages 191-201, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jose Giovany Babativa-Márquez & José Luis Vicente-Villardón, 2021. "Logistic Biplot by Conjugate Gradient Algorithms and Iterated SVD," Mathematics, MDPI, vol. 9(16), pages 1-19, August.
    2. Steffen Borgwardt & Rafael M. Frongillo, 2019. "Power Diagram Detection with Applications to Information Elicitation," Journal of Optimization Theory and Applications, Springer, vol. 181(1), pages 184-196, April.
    3. Melissa Gladstone & Gillian Lancaster & Gareth McCray & Vanessa Cavallera & Claudia R. L. Alves & Limbika Maliwichi & Muneera A. Rasheed & Tarun Dua & Magdalena Janus & Patricia Kariger, 2021. "Validation of the Infant and Young Child Development (IYCD) Indicators in Three Countries: Brazil, Malawi and Pakistan," IJERPH, MDPI, vol. 18(11), pages 1-19, June.
    4. Björn Andersson & Tao Xin, 2021. "Estimation of Latent Regression Item Response Theory Models Using a Second-Order Laplace Approximation," Journal of Educational and Behavioral Statistics, , vol. 46(2), pages 244-265, April.
    5. Yoav Bergner & Peter Halpin & Jill-Jênn Vie, 2022. "Multidimensional Item Response Theory in the Style of Collaborative Filtering," Psychometrika, Springer;The Psychometric Society, vol. 87(1), pages 266-288, March.
    6. Yang Liu, 2020. "A Riemannian Optimization Algorithm for Joint Maximum Likelihood Estimation of High-Dimensional Exploratory Item Factor Analysis," Psychometrika, Springer;The Psychometric Society, vol. 85(2), pages 439-468, June.
    7. Chanjin Zheng & Shaoyang Guo & Justin L Kern, 2021. "Fast Bayesian Estimation for the Four-Parameter Logistic Model (4PLM)," SAGE Open, , vol. 11(4), pages 21582440211, October.
    8. Alexander Robitzsch, 2021. "A Comprehensive Simulation Study of Estimation Methods for the Rasch Model," Stats, MDPI, vol. 4(4), pages 1-23, October.
    9. Yang Liu & Jan Hannig, 2017. "Generalized Fiducial Inference for Logistic Graded Response Models," Psychometrika, Springer;The Psychometric Society, vol. 82(4), pages 1097-1125, December.
    10. Isabel Gallego‐Alvarez & Eduardo Ortas & José Luis Vicente‐Villardón & Igor Álvarez Etxeberria, 2017. "Institutional Constraints, Stakeholder Pressure and Corporate Environmental Reporting Policies," Business Strategy and the Environment, Wiley Blackwell, vol. 26(6), pages 807-825, September.
    11. Yang Liu & Ji Seung Yang, 2018. "Bootstrap-Calibrated Interval Estimates for Latent Variable Scores in Item Response Theory," Psychometrika, Springer;The Psychometric Society, vol. 83(2), pages 333-354, June.
    12. Björn Andersson & Marie Wiberg, 2017. "Item Response Theory Observed-Score Kernel Equating," Psychometrika, Springer;The Psychometric Society, vol. 82(1), pages 48-66, March.
    13. Christopher J. Urban & Daniel J. Bauer, 2021. "A Deep Learning Algorithm for High-Dimensional Exploratory Item Factor Analysis," Psychometrika, Springer;The Psychometric Society, vol. 86(1), pages 1-29, March.
    14. Paul A. Jewsbury & Peter W. van Rijn, 2020. "IRT and MIRT Models for Item Parameter Estimation With Multidimensional Multistage Tests," Journal of Educational and Behavioral Statistics, , vol. 45(4), pages 383-402, August.
    15. Michela Battauz, 2023. "Testing for differences in chain equating," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 77(2), pages 134-145, May.
    16. Zhehan Jiang & Jonathan Templin, 2019. "Gibbs Samplers for Logistic Item Response Models via the Pólya–Gamma Distribution: A Computationally Efficient Data-Augmentation Strategy," Psychometrika, Springer;The Psychometric Society, vol. 84(2), pages 358-374, June.
    17. Sara Fernandes & Guillaume Fond & Xavier Zendjidjian & Pierre Michel & Karine Baumstarck & Christophe Lançon & Ludovic Samalin & Pierre-Michel Llorca & Magali Coldefy & Pascal Auquier & Laurent Boyer , 2022. "Development and Calibration of the PREMIUM Item Bank for Measuring Respect and Dignity for Patients with Severe Mental Illness," Post-Print hal-03649277, HAL.
    18. Gao, Sujuan & Shen, Jianzhao, 2007. "Asymptotic properties of a double penalized maximum likelihood estimator in logistic regression," Statistics & Probability Letters, Elsevier, vol. 77(9), pages 925-930, May.
    19. Felix Zimmer & Clemens Draxler & Rudolf Debelak, 2023. "Power Analysis for the Wald, LR, Score, and Gradient Tests in a Marginal Maximum Likelihood Framework: Applications in IRT," Psychometrika, Springer;The Psychometric Society, vol. 88(4), pages 1249-1298, December.
    20. Yunxiao Chen & Xiaoou Li & Siliang Zhang, 2019. "Joint Maximum Likelihood Estimation for High-Dimensional Exploratory Item Factor Analysis," Psychometrika, Springer;The Psychometric Society, vol. 84(1), pages 124-146, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:advdac:v:11:y:2017:i:2:d:10.1007_s11634-016-0249-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.