IDEAS home Printed from https://ideas.repec.org/a/spr/psycho/v82y2017i1d10.1007_s11336-016-9528-7.html
   My bibliography  Save this article

Item Response Theory Observed-Score Kernel Equating

Author

Listed:
  • Björn Andersson

    (Beijing Normal University
    Uppsala University)

  • Marie Wiberg

    (Umeå University)

Abstract

Item response theory (IRT) observed-score kernel equating is introduced for the non-equivalent groups with anchor test equating design using either chain equating or post-stratification equating. The equating function is treated in a multivariate setting and the asymptotic covariance matrices of IRT observed-score kernel equating functions are derived. Equating is conducted using the two-parameter and three-parameter logistic models with simulated data and data from a standardized achievement test. The results show that IRT observed-score kernel equating offers small standard errors and low equating bias under most settings considered.

Suggested Citation

  • Björn Andersson & Marie Wiberg, 2017. "Item Response Theory Observed-Score Kernel Equating," Psychometrika, Springer;The Psychometric Society, vol. 82(1), pages 48-66, March.
  • Handle: RePEc:spr:psycho:v:82:y:2017:i:1:d:10.1007_s11336-016-9528-7
    DOI: 10.1007/s11336-016-9528-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11336-016-9528-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11336-016-9528-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Haruhiko Ogasawara, 2003. "Asymptotic standard errors of irt observed-score equating methods," Psychometrika, Springer;The Psychometric Society, vol. 68(2), pages 193-211, June.
    2. R. Bock & Murray Aitkin, 1981. "Marginal maximum likelihood estimation of item parameters: Application of an EM algorithm," Psychometrika, Springer;The Psychometric Society, vol. 46(4), pages 443-459, December.
    3. Chalmers, R. Philip, 2012. "mirt: A Multidimensional Item Response Theory Package for the R Environment," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 48(i06).
    4. Battauz, Michela, 2015. "equateIRT: An R Package for IRT Test Equating," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 68(i07).
    5. Andersson, Björn & Bränberg, Kenny & Wiberg, Marie, 2013. "Performing the Kernel Method of Test Equating with the Package kequate," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 55(i06).
    6. Ogasawara, Haruhiko, 2000. "Asymptotic Standard Errors of IRT Equating Coefficients Using Moments," 商学討究 (Shogaku Tokyu), Otaru University of Commerce, vol. 51(1), pages 1-23.
    7. Haruhiko Ogasawara, 2009. "Asymptotic cumulants of the parameter estimators in item response theory," Computational Statistics, Springer, vol. 24(2), pages 313-331, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Michela Battauz, 2023. "Testing for differences in chain equating," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 77(2), pages 134-145, May.
    2. Michela Battauz, 2017. "Multiple Equating of Separate IRT Calibrations," Psychometrika, Springer;The Psychometric Society, vol. 82(3), pages 610-636, September.
    3. Ogasawara, Haruhiko, 2010. "Asymptotic expansions for the pivots using log-likelihood derivatives with an application in item response theory," Journal of Multivariate Analysis, Elsevier, vol. 101(9), pages 2149-2167, October.
    4. John Patrick Lalor & Pedro Rodriguez, 2023. "py-irt : A Scalable Item Response Theory Library for Python," INFORMS Journal on Computing, INFORMS, vol. 35(1), pages 5-13, January.
    5. Michela Battauz, 2019. "On Wald tests for differential item functioning detection," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 28(1), pages 103-118, March.
    6. Michela Battauz, 2013. "IRT Test Equating in Complex Linkage Plans," Psychometrika, Springer;The Psychometric Society, vol. 78(3), pages 464-480, July.
    7. Battauz, Michela, 2015. "equateIRT: An R Package for IRT Test Equating," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 68(i07).
    8. Melissa Gladstone & Gillian Lancaster & Gareth McCray & Vanessa Cavallera & Claudia R. L. Alves & Limbika Maliwichi & Muneera A. Rasheed & Tarun Dua & Magdalena Janus & Patricia Kariger, 2021. "Validation of the Infant and Young Child Development (IYCD) Indicators in Three Countries: Brazil, Malawi and Pakistan," IJERPH, MDPI, vol. 18(11), pages 1-19, June.
    9. Björn Andersson & Tao Xin, 2021. "Estimation of Latent Regression Item Response Theory Models Using a Second-Order Laplace Approximation," Journal of Educational and Behavioral Statistics, , vol. 46(2), pages 244-265, April.
    10. Haruhiko Ogasawara, 2003. "Asymptotic standard errors of irt observed-score equating methods," Psychometrika, Springer;The Psychometric Society, vol. 68(2), pages 193-211, June.
    11. Alexander Robitzsch, 2021. "A Comprehensive Simulation Study of Estimation Methods for the Rasch Model," Stats, MDPI, vol. 4(4), pages 1-23, October.
    12. Michelle D. Barrett & Wim J. van der Linden, 2019. "Estimating Linking Functions for Response Model Parameters," Journal of Educational and Behavioral Statistics, , vol. 44(2), pages 180-209, April.
    13. Alexander Robitzsch, 2024. "Estimation of Standard Error, Linking Error, and Total Error for Robust and Nonrobust Linking Methods in the Two-Parameter Logistic Model," Stats, MDPI, vol. 7(3), pages 1-21, June.
    14. Ogasawara, Haruhiko, 2013. "Asymptotic cumulants of ability estimators using fallible item parameters," Journal of Multivariate Analysis, Elsevier, vol. 119(C), pages 144-162.
    15. Christopher J. Urban & Daniel J. Bauer, 2021. "A Deep Learning Algorithm for High-Dimensional Exploratory Item Factor Analysis," Psychometrika, Springer;The Psychometric Society, vol. 86(1), pages 1-29, March.
    16. Zhehan Jiang & Jonathan Templin, 2019. "Gibbs Samplers for Logistic Item Response Models via the Pólya–Gamma Distribution: A Computationally Efficient Data-Augmentation Strategy," Psychometrika, Springer;The Psychometric Society, vol. 84(2), pages 358-374, June.
    17. Sara Fernandes & Guillaume Fond & Xavier Zendjidjian & Pierre Michel & Karine Baumstarck & Christophe Lançon & Ludovic Samalin & Pierre-Michel Llorca & Magali Coldefy & Pascal Auquier & Laurent Boyer , 2022. "Development and Calibration of the PREMIUM Item Bank for Measuring Respect and Dignity for Patients with Severe Mental Illness," Post-Print hal-03649277, HAL.
    18. Felix Zimmer & Clemens Draxler & Rudolf Debelak, 2023. "Power Analysis for the Wald, LR, Score, and Gradient Tests in a Marginal Maximum Likelihood Framework: Applications in IRT," Psychometrika, Springer;The Psychometric Society, vol. 88(4), pages 1249-1298, December.
    19. Ping Chen & Chun Wang, 2021. "Using EM Algorithm for Finite Mixtures and Reformed Supplemented EM for MIRT Calibration," Psychometrika, Springer;The Psychometric Society, vol. 86(1), pages 299-326, March.
    20. Julio César Hernández-Sánchez & José Luis Vicente-Villardón, 2017. "Logistic biplot for nominal data," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 11(2), pages 307-326, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:psycho:v:82:y:2017:i:1:d:10.1007_s11336-016-9528-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.