IDEAS home Printed from https://ideas.repec.org/a/spr/psycho/v83y2018i2d10.1007_s11336-017-9595-4.html
   My bibliography  Save this article

Cognitive Diagnosis for Small Educational Programs: The General Nonparametric Classification Method

Author

Listed:
  • Chia-Yi Chiu

    (Rutgers, The State University of New Jersey)

  • Yan Sun

    (Rutgers, The State University of New Jersey)

  • Yanhong Bian

    (Rutgers, The State University of New Jersey)

Abstract

The focus of cognitive diagnosis (CD) is on evaluating an examinee’s strengths and weaknesses in terms of cognitive skills learned and skills that need study. Current methods for fitting CD models (CDMs) work well for large-scale assessments, where the data of hundreds or thousands of examinees are available. However, the development of CD-based assessment tools that can be used in small-scale test settings, say, for monitoring the instruction and learning process at the classroom level has not kept up with the rapid pace at which research and development proceeded for large-scale assessments. The main reason is that the sample sizes of the small-scale test settings are simply too small to guarantee the reliable estimation of item parameters and examinees’ proficiency class membership. In this article, a general nonparametric classification (GNPC) method that allows for assigning examinees to the correct proficiency classes with a high rate when sample sizes are at the classroom level is proposed as an extension of the nonparametric classification (NPC) method (Chiu and Douglas in J Classif 30:225–250, 2013). The proposed method remedies the shortcomings of the NPC method and can accommodate any CDM. The theoretical justification and the empirical studies are presented based on the saturated general CDMs, supporting the legitimacy of using the GNPC method with any CDM. The results from the simulation studies and real data analysis show that the GNPC method outperforms the general CDMs when samples are small.

Suggested Citation

  • Chia-Yi Chiu & Yan Sun & Yanhong Bian, 2018. "Cognitive Diagnosis for Small Educational Programs: The General Nonparametric Classification Method," Psychometrika, Springer;The Psychometric Society, vol. 83(2), pages 355-375, June.
  • Handle: RePEc:spr:psycho:v:83:y:2018:i:2:d:10.1007_s11336-017-9595-4
    DOI: 10.1007/s11336-017-9595-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11336-017-9595-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11336-017-9595-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hans-Friedrich Köhn & Chia-Yi Chiu, 2017. "A Procedure for Assessing the Completeness of the Q-Matrices of Cognitively Diagnostic Tests," Psychometrika, Springer;The Psychometric Society, vol. 82(1), pages 112-132, March.
    2. William Stout, 2002. "Psychometrics: From practice to theory and back," Psychometrika, Springer;The Psychometric Society, vol. 67(4), pages 485-518, December.
    3. George B. Macready & C. Mitchell Dayton, 1977. "The Use of Probabilistic Models in the Assessment of Mastery," Journal of Educational and Behavioral Statistics, , vol. 2(2), pages 99-120, June.
    4. Chia-Yi Chiu & Jeffrey Douglas & Xiaodong Li, 2009. "Cluster Analysis for Cognitive Diagnosis: Theory and Applications," Psychometrika, Springer;The Psychometric Society, vol. 74(4), pages 633-665, December.
    5. Kikumi K. Tatsuoka, 1985. "A Probabilistic Model for Diagnosing Misconceptions By The Pattern Classification Approach," Journal of Educational and Behavioral Statistics, , vol. 10(1), pages 55-73, March.
    6. Chia-Yi Chiu & Jeff Douglas, 2013. "A Nonparametric Approach to Cognitive Diagnosis by Proximity to Ideal Response Patterns," Journal of Classification, Springer;The Classification Society, vol. 30(2), pages 225-250, July.
    7. Jimmy de la Torre, 2011. "The Generalized DINA Model Framework," Psychometrika, Springer;The Psychometric Society, vol. 76(2), pages 179-199, April.
    8. Matthew Stephens, 2000. "Dealing with label switching in mixture models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 62(4), pages 795-809.
    9. Elizabeth S. Garrett & Scott L. Zeger, 2000. "Latent Class Model Diagnosis," Biometrics, The International Biometric Society, vol. 56(4), pages 1055-1067, December.
    10. E. Maris, 1999. "Estimating multiple classification latent class models," Psychometrika, Springer;The Psychometric Society, vol. 64(2), pages 187-212, June.
    11. Shiyu Wang & Jeff Douglas, 2015. "Consistency of Nonparametric Classification in Cognitive Diagnosis," Psychometrika, Springer;The Psychometric Society, vol. 80(1), pages 85-100, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yu Wang & Chia-Yi Chiu & Hans Friedrich Köhn, 2023. "Nonparametric Classification Method for Multiple-Choice Items in Cognitive Diagnosis," Journal of Educational and Behavioral Statistics, , vol. 48(2), pages 189-219, April.
    2. Chenchen Ma & Jimmy Torre & Gongjun Xu, 2023. "Bridging Parametric and Nonparametric Methods in Cognitive Diagnosis," Psychometrika, Springer;The Psychometric Society, vol. 88(1), pages 51-75, March.
    3. Cheng-Hsuan Li & Yi-Jin Ju & Pei-Jyun Hsieh, 2022. "A Nonparametric Weighted Cognitive Diagnosis Model and Its Application on Remedial Instruction in a Small-Class Situation," Sustainability, MDPI, vol. 14(10), pages 1-17, May.
    4. Chia-Yi Chiu & Hans-Friedrich Köhn, 2019. "Consistency Theory for the General Nonparametric Classification Method," Psychometrika, Springer;The Psychometric Society, vol. 84(3), pages 830-845, September.
    5. Chia-Yi Chiu & Yuan-Pei Chang, 2021. "Advances in CD-CAT: The General Nonparametric Item Selection Method," Psychometrika, Springer;The Psychometric Society, vol. 86(4), pages 1039-1057, December.
    6. Pablo Nájera & Francisco J. Abad & Chia-Yi Chiu & Miguel A. Sorrel, 2023. "The Restricted DINA Model: A Comprehensive Cognitive Diagnostic Model for Classroom-Level Assessments," Journal of Educational and Behavioral Statistics, , vol. 48(6), pages 719-749, December.
    7. David Arthur & Hua-Hua Chang, 2024. "DINA-BAG: A Bagging Algorithm for DINA Model Parameter Estimation in Small Samples," Journal of Educational and Behavioral Statistics, , vol. 49(3), pages 342-367, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chia-Yi Chiu & Hans-Friedrich Köhn, 2019. "Consistency Theory for the General Nonparametric Classification Method," Psychometrika, Springer;The Psychometric Society, vol. 84(3), pages 830-845, September.
    2. Chia-Yi Chiu & Hans-Friedrich Köhn & Yi Zheng & Robert Henson, 2016. "Joint Maximum Likelihood Estimation for Diagnostic Classification Models," Psychometrika, Springer;The Psychometric Society, vol. 81(4), pages 1069-1092, December.
    3. Hans-Friedrich Köhn & Chia-Yi Chiu, 2018. "How to Build a Complete Q-Matrix for a Cognitively Diagnostic Test," Journal of Classification, Springer;The Classification Society, vol. 35(2), pages 273-299, July.
    4. Hans-Friedrich Köhn & Chia-Yi Chiu, 2017. "A Procedure for Assessing the Completeness of the Q-Matrices of Cognitively Diagnostic Tests," Psychometrika, Springer;The Psychometric Society, vol. 82(1), pages 112-132, March.
    5. Kazuhiro Yamaguchi & Jonathan Templin, 2022. "Direct Estimation of Diagnostic Classification Model Attribute Mastery Profiles via a Collapsed Gibbs Sampling Algorithm," Psychometrika, Springer;The Psychometric Society, vol. 87(4), pages 1390-1421, December.
    6. Hans-Friedrich Köhn & Chia-Yi Chiu, 2019. "Attribute Hierarchy Models in Cognitive Diagnosis: Identifiability of the Latent Attribute Space and Conditions for Completeness of the Q-Matrix," Journal of Classification, Springer;The Classification Society, vol. 36(3), pages 541-565, October.
    7. Chia-Yi Chiu & Yuan-Pei Chang, 2021. "Advances in CD-CAT: The General Nonparametric Item Selection Method," Psychometrika, Springer;The Psychometric Society, vol. 86(4), pages 1039-1057, December.
    8. Chenchen Ma & Jimmy Torre & Gongjun Xu, 2023. "Bridging Parametric and Nonparametric Methods in Cognitive Diagnosis," Psychometrika, Springer;The Psychometric Society, vol. 88(1), pages 51-75, March.
    9. Yu Wang & Chia-Yi Chiu & Hans Friedrich Köhn, 2023. "Nonparametric Classification Method for Multiple-Choice Items in Cognitive Diagnosis," Journal of Educational and Behavioral Statistics, , vol. 48(2), pages 189-219, April.
    10. Shiyu Wang & Jeff Douglas, 2015. "Consistency of Nonparametric Classification in Cognitive Diagnosis," Psychometrika, Springer;The Psychometric Society, vol. 80(1), pages 85-100, March.
    11. Pablo Nájera & Francisco J. Abad & Chia-Yi Chiu & Miguel A. Sorrel, 2023. "The Restricted DINA Model: A Comprehensive Cognitive Diagnostic Model for Classroom-Level Assessments," Journal of Educational and Behavioral Statistics, , vol. 48(6), pages 719-749, December.
    12. Hans-Friedrich Köhn & Chia-Yi Chiu, 2016. "A Proof of the Duality of the DINA Model and the DINO Model," Journal of Classification, Springer;The Classification Society, vol. 33(2), pages 171-184, July.
    13. Guanhua Fang & Jingchen Liu & Zhiliang Ying, 2019. "On the Identifiability of Diagnostic Classification Models," Psychometrika, Springer;The Psychometric Society, vol. 84(1), pages 19-40, March.
    14. Kazuhiro Yamaguchi & Kensuke Okada, 2020. "Variational Bayes Inference for the DINA Model," Journal of Educational and Behavioral Statistics, , vol. 45(5), pages 569-597, October.
    15. Chen, Yunxiao & Liu, Jingchen & Xu, Gongjun & Ying, Zhiliang, 2015. "Statistical analysis of Q-matrix based diagnostic classification models," LSE Research Online Documents on Economics 103183, London School of Economics and Political Science, LSE Library.
    16. Peida Zhan & Wen-Chung Wang & Xiaomin Li, 2020. "A Partial Mastery, Higher-Order Latent Structural Model for Polytomous Attributes in Cognitive Diagnostic Assessments," Journal of Classification, Springer;The Classification Society, vol. 37(2), pages 328-351, July.
    17. Hans Friedrich Köhn & Chia-Yi Chiu, 2021. "A Unified Theory of the Completeness of Q-Matrices for the DINA Model," Journal of Classification, Springer;The Classification Society, vol. 38(3), pages 500-518, October.
    18. Cheng-Hsuan Li & Yi-Jin Ju & Pei-Jyun Hsieh, 2022. "A Nonparametric Weighted Cognitive Diagnosis Model and Its Application on Remedial Instruction in a Small-Class Situation," Sustainability, MDPI, vol. 14(10), pages 1-17, May.
    19. Youn Seon Lim & Fritz Drasgow, 2019. "Conditional Independence and Dimensionality of Cognitive Diagnostic Models: a Test for Model Fit," Journal of Classification, Springer;The Classification Society, vol. 36(2), pages 295-305, July.
    20. Yuqi Gu & Jingchen Liu & Gongjun Xu & Zhiliang Ying, 2018. "Hypothesis Testing of the Q-matrix," Psychometrika, Springer;The Psychometric Society, vol. 83(3), pages 515-537, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:psycho:v:83:y:2018:i:2:d:10.1007_s11336-017-9595-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.