IDEAS home Printed from https://ideas.repec.org/a/sae/jedbes/v2y1977i2p99-120.html
   My bibliography  Save this article

The Use of Probabilistic Models in the Assessment of Mastery

Author

Listed:
  • George B. Macready
  • C. Mitchell Dayton

Abstract

Descriptions are presented of two related probabilistic models that can be used for making classification decisions with respect to mastery of specific concepts or skills. Included are the development of procedures for: (a) assessing the adequacy of “fit†provided by the models; (b) identifying optimal decision rules for mastery classification; and (c) identifying minimally sufficient numbers of items necessary to obtain acceptable levels of misclassification.

Suggested Citation

  • George B. Macready & C. Mitchell Dayton, 1977. "The Use of Probabilistic Models in the Assessment of Mastery," Journal of Educational and Behavioral Statistics, , vol. 2(2), pages 99-120, June.
  • Handle: RePEc:sae:jedbes:v:2:y:1977:i:2:p:99-120
    DOI: 10.3102/10769986002002099
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.3102/10769986002002099
    Download Restriction: no

    File URL: https://libkey.io/10.3102/10769986002002099?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hans-Friedrich Köhn & Chia-Yi Chiu, 2017. "A Procedure for Assessing the Completeness of the Q-Matrices of Cognitively Diagnostic Tests," Psychometrika, Springer;The Psychometric Society, vol. 82(1), pages 112-132, March.
    2. Chia-Yi Chiu & Hans-Friedrich Köhn & Yi Zheng & Robert Henson, 2016. "Joint Maximum Likelihood Estimation for Diagnostic Classification Models," Psychometrika, Springer;The Psychometric Society, vol. 81(4), pages 1069-1092, December.
    3. Hans-Friedrich Köhn & Chia-Yi Chiu, 2016. "A Proof of the Duality of the DINA Model and the DINO Model," Journal of Classification, Springer;The Classification Society, vol. 33(2), pages 171-184, July.
    4. Chia-Yi Chiu & Yan Sun & Yanhong Bian, 2018. "Cognitive Diagnosis for Small Educational Programs: The General Nonparametric Classification Method," Psychometrika, Springer;The Psychometric Society, vol. 83(2), pages 355-375, June.
    5. Hans-Friedrich Köhn & Chia-Yi Chiu, 2018. "How to Build a Complete Q-Matrix for a Cognitively Diagnostic Test," Journal of Classification, Springer;The Classification Society, vol. 35(2), pages 273-299, July.
    6. Hans-Friedrich Köhn & Chia-Yi Chiu, 2019. "Attribute Hierarchy Models in Cognitive Diagnosis: Identifiability of the Latent Attribute Space and Conditions for Completeness of the Q-Matrix," Journal of Classification, Springer;The Classification Society, vol. 36(3), pages 541-565, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:jedbes:v:2:y:1977:i:2:p:99-120. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.