IDEAS home Printed from https://ideas.repec.org/a/spr/psycho/v82y2017i3d10.1007_s11336-016-9535-8.html
   My bibliography  Save this article

Standard Errors and Confidence Intervals of Norm Statistics for Educational and Psychological Tests

Author

Listed:
  • Hannah E. M. Oosterhuis

    (Tilburg University)

  • L. Andries Ark

    (University of Amsterdam)

  • Klaas Sijtsma

    (Tilburg University)

Abstract

Norm statistics allow for the interpretation of scores on psychological and educational tests, by relating the test score of an individual test taker to the test scores of individuals belonging to the same gender, age, or education groups, et cetera. Given the uncertainty due to sampling error, one would expect researchers to report standard errors for norm statistics. In practice, standard errors are seldom reported; they are either unavailable or derived under strong distributional assumptions that may not be realistic for test scores. We derived standard errors for four norm statistics (standard deviation, percentile ranks, stanine boundaries and Z-scores) under the mild assumption that the test scores are multinomially distributed. A simulation study showed that the standard errors were unbiased and that corresponding Wald-based confidence intervals had good coverage. Finally, we discuss the possibilities for applying the standard errors in practical test use in education and psychology. The procedure is provided via the R function check.norms, which is available in the mokken package.

Suggested Citation

  • Hannah E. M. Oosterhuis & L. Andries Ark & Klaas Sijtsma, 2017. "Standard Errors and Confidence Intervals of Norm Statistics for Educational and Psychological Tests," Psychometrika, Springer;The Psychometric Society, vol. 82(3), pages 559-588, September.
  • Handle: RePEc:spr:psycho:v:82:y:2017:i:3:d:10.1007_s11336-016-9535-8
    DOI: 10.1007/s11336-016-9535-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11336-016-9535-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11336-016-9535-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Alan Agresti & Yongyi Min, 2001. "On Small-Sample Confidence Intervals for Parameters in Discrete Distributions," Biometrics, The International Biometric Society, vol. 57(3), pages 963-971, September.
    2. Herbert M. Kritzer, 1977. "Analyzing Measures of Association Derived From Contingency Tables," Sociological Methods & Research, , vol. 5(4), pages 387-418, May.
    3. L. Ark & Marcel Croon & Klaas Sijtsma, 2008. "Mokken Scale Analysis for Dichotomous Items Using Marginal Models," Psychometrika, Springer;The Psychometric Society, vol. 73(2), pages 183-208, June.
    4. van der Ark, L. Andries, 2012. "New Developments in Mokken Scale Analysis in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 48(i05).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alexandra Lenhard & Wolfgang Lenhard & Sebastian Gary, 2019. "Continuous norming of psychometric tests: A simulation study of parametric and semi-parametric approaches," PLOS ONE, Public Library of Science, vol. 14(9), pages 1-30, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jules Ellis, 2014. "An Inequality for Correlations in Unidimensional Monotone Latent Variable Models for Binary Variables," Psychometrika, Springer;The Psychometric Society, vol. 79(2), pages 303-316, April.
    2. Michael Brusco & Hans-Friedrich Köhn & Douglas Steinley, 2015. "An Exact Method for Partitioning Dichotomous Items Within the Framework of the Monotone Homogeneity Model," Psychometrika, Springer;The Psychometric Society, vol. 80(4), pages 949-967, December.
    3. César Merino-Soto & Gina Chávez-Ventura & Verónica López-Fernández & Guillermo M. Chans & Filiberto Toledano-Toledano, 2022. "Learning Self-Regulation Questionnaire (SRQ-L): Psychometric and Measurement Invariance Evidence in Peruvian Undergraduate Students," Sustainability, MDPI, vol. 14(18), pages 1-17, September.
    4. Michael Brusco & J Dennis Cradit & Douglas Steinley, 2021. "A comparison of 71 binary similarity coefficients: The effect of base rates," PLOS ONE, Public Library of Science, vol. 16(4), pages 1-19, April.
    5. Henry Santa-Cruz-Espinoza & Gina Chávez-Ventura & Julio Domínguez-Vergara & César Merino-Soto, 2023. "Internal Structure of the Work–Family Conflict Questionnaire (WFCQ) in Teacher Teleworking," IJERPH, MDPI, vol. 20(2), pages 1-16, January.
    6. Joseph B. Lang, 2017. "Mean-Minimum Exact Confidence Intervals," The American Statistician, Taylor & Francis Journals, vol. 71(4), pages 354-368, October.
    7. Devan V. Mehrotra & Ivan S. F. Chan & Roger L. Berger, 2003. "A Cautionary Note on Exact Unconditional Inference for a Difference between Two Independent Binomial Proportions," Biometrics, The International Biometric Society, vol. 59(2), pages 441-450, June.
    8. Tang, Man-Lai & Qiu, Shi-Fang & Poon, Wai-Yin, 2012. "Confidence interval construction for disease prevalence based on partial validation series," Computational Statistics & Data Analysis, Elsevier, vol. 56(5), pages 1200-1220.
    9. Agresti, Alan & Gottard, Anna, 2007. "Nonconservative exact small-sample inference for discrete data," Computational Statistics & Data Analysis, Elsevier, vol. 51(12), pages 6447-6458, August.
    10. Jesper Tijmstra & Maria Bolsinova, 2019. "Bayes Factors for Evaluating Latent Monotonicity in Polytomous Item Response Theory Models," Psychometrika, Springer;The Psychometric Society, vol. 84(3), pages 846-869, September.
    11. Martin Biehler & Heinz Holling & Philipp Doebler, 2015. "Saddlepoint Approximations of the Distribution of the Person Parameter in the Two Parameter Logistic Model," Psychometrika, Springer;The Psychometric Society, vol. 80(3), pages 665-688, September.
    12. Alessandro Chiarotto & Annette Bishop & Nadine E Foster & Kirsty Duncan & Ebenezer Afolabi & Raymond W Ostelo & Muirne C S Paap, 2018. "Item response theory evaluation of the biomedical scale of the Pain Attitudes and Beliefs Scale," PLOS ONE, Public Library of Science, vol. 13(9), pages 1-17, September.
    13. van der Ark, L. Andries, 2012. "New Developments in Mokken Scale Analysis in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 48(i05).
    14. Simon Foster & Meichun Mohler-Kuo, 2020. "The proportion of non-depressed subjects in a study sample strongly affects the results of psychometric analyses of depression symptoms," PLOS ONE, Public Library of Science, vol. 15(7), pages 1-13, July.
    15. César Merino-Soto & Milagros Lozano-Huamán & Sadith Lima-Mendoza & Gustavo Calderón de la Cruz & Arturo Juárez-García & Filiberto Toledano-Toledano, 2022. "Ultrashort Version of the Utrecht Work Engagement Scale (UWES-3): A Psychometric Assessment," IJERPH, MDPI, vol. 19(2), pages 1-14, January.
    16. Nian-Sheng Tang & Man-Lai Tang, 2002. "Exact Unconditional Inference for Risk Ratio in a Correlated 2 × 2 Table with Structural Zero," Biometrics, The International Biometric Society, vol. 58(4), pages 972-980, December.
    17. Bastiaan Bruinsma, 2020. "A comparison of measures to validate scales in voting advice applications," Quality & Quantity: International Journal of Methodology, Springer, vol. 54(4), pages 1299-1316, August.
    18. Jesper Tijmstra & David Hessen & Peter Heijden & Klaas Sijtsma, 2013. "Testing Manifest Monotonicity Using Order-Constrained Statistical Inference," Psychometrika, Springer;The Psychometric Society, vol. 78(1), pages 83-97, January.
    19. César Merino-Soto & Manuel Fernández-Arata & Jaime Fuentes-Balderrama & Guillermo M. Chans & Filiberto Toledano-Toledano, 2022. "Research Perceived Competency Scale: A New Psychometric Adaptation for University Students’ Research Learning," Sustainability, MDPI, vol. 14(19), pages 1-17, September.
    20. Salim Moussa, 2016. "A two-step item response theory procedure for a better measurement of marketing constructs," Journal of Marketing Analytics, Palgrave Macmillan, vol. 4(1), pages 28-50, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:psycho:v:82:y:2017:i:3:d:10.1007_s11336-016-9535-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.