IDEAS home Printed from https://ideas.repec.org/a/spr/qualqt/v54y2020i4d10.1007_s11135-020-00986-8.html
   My bibliography  Save this article

A comparison of measures to validate scales in voting advice applications

Author

Listed:
  • Bastiaan Bruinsma

    (Goethe University Frankfurt am Main)

Abstract

Voting advice applications (VAAs) are online tools providing voting advice to their users. This voting advice is based on the match between the answers of the user and the answers of several political parties to a common questionnaire on political attitudes. To visualize this match, VAAs use a wide array of visualisations, most popular of which are the two-dimensional political maps. These maps show the position of both the political parties and the user in the political landscape, allowing the user to understand both their own position and their relation to the political parties. To construct these maps, VAAs require scales that represent the main underlying dimensions of the political space. This makes the correct construction of these scales important if the VAA aims to provide accurate and helpful voting advice. This paper presents three criteria that assess if a VAA achieves this aim. To illustrate their usefulness, these three criteria—unidimensionality, reliability and quality—are used to assess the scales in the cross-national EUVox VAA, a VAA designed for the European Parliament elections of 2014. Using techniques from Mokken scaling analysis and categorical principal component analysis to capture the metrics, I find that most scales show low unidimensionality and reliability. Moreover, even while designers can—and sometimes do—use certain techniques to improve their scales, these improvements are rarely enough to overcome all of the problems regarding unidimensionality, reliability and quality. This leaves certain problems for the designers of VAAs and designers of similar type online surveys.

Suggested Citation

  • Bastiaan Bruinsma, 2020. "A comparison of measures to validate scales in voting advice applications," Quality & Quantity: International Journal of Methodology, Springer, vol. 54(4), pages 1299-1316, August.
  • Handle: RePEc:spr:qualqt:v:54:y:2020:i:4:d:10.1007_s11135-020-00986-8
    DOI: 10.1007/s11135-020-00986-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11135-020-00986-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11135-020-00986-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. van der Ark, L. Andries, 2007. "Mokken Scale Analysis in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 20(i11).
    2. J. Straat & L. Ark & Klaas Sijtsma, 2013. "Comparing Optimization Algorithms for Item Selection in Mokken Scale Analysis," Journal of Classification, Springer;The Classification Society, vol. 30(1), pages 75-99, April.
    3. Anthony Downs, 1957. "An Economic Theory of Political Action in a Democracy," Journal of Political Economy, University of Chicago Press, vol. 65(2), pages 135-135.
    4. Klaas Sijtsma, 2009. "On the Use, the Misuse, and the Very Limited Usefulness of Cronbach’s Alpha," Psychometrika, Springer;The Psychometric Society, vol. 74(1), pages 107-120, March.
    5. van der Ark, L. Andries, 2012. "New Developments in Mokken Scale Analysis in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 48(i05).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Coromina, Lluís & Camprubí, Raquel, 2016. "Analysis of tourism information sources using a Mokken Scale perspective," Tourism Management, Elsevier, vol. 56(C), pages 75-84.
    2. Jules L. Ellis & Klaas Sijtsma, 2023. "A Test to Distinguish Monotone Homogeneity from Monotone Multifactor Models," Psychometrika, Springer;The Psychometric Society, vol. 88(2), pages 387-412, June.
    3. Michael Brusco & Hans-Friedrich Köhn & Douglas Steinley, 2015. "An Exact Method for Partitioning Dichotomous Items Within the Framework of the Monotone Homogeneity Model," Psychometrika, Springer;The Psychometric Society, vol. 80(4), pages 949-967, December.
    4. Michael Brusco & J Dennis Cradit & Douglas Steinley, 2021. "A comparison of 71 binary similarity coefficients: The effect of base rates," PLOS ONE, Public Library of Science, vol. 16(4), pages 1-19, April.
    5. Jesper Tijmstra & Maria Bolsinova, 2019. "Bayes Factors for Evaluating Latent Monotonicity in Polytomous Item Response Theory Models," Psychometrika, Springer;The Psychometric Society, vol. 84(3), pages 846-869, September.
    6. van der Ark, L. Andries, 2012. "New Developments in Mokken Scale Analysis in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 48(i05).
    7. Salim Moussa, 2016. "A two-step item response theory procedure for a better measurement of marketing constructs," Journal of Marketing Analytics, Palgrave Macmillan, vol. 4(1), pages 28-50, March.
    8. Dima, Alexandra L. & Stutterheim, Sarah E. & Lyimo, Ramsey & de Bruin, Marijn, 2014. "Advancing methodology in the study of HIV status disclosure: The importance of considering disclosure target and intent," Social Science & Medicine, Elsevier, vol. 108(C), pages 166-174.
    9. Andersson-Hudson, Jessica & Rose, Jonathan & Humphrey, Mathew & Knight, Wil & O'Hara, Sarah, 2019. "The structure of attitudes towards shale gas extraction in the United Kingdom," Energy Policy, Elsevier, vol. 129(C), pages 693-697.
    10. Mazza, Angelo & Punzo, Antonio & McGuire, Brian, 2014. "KernSmoothIRT: An R Package for Kernel Smoothing in Item Response Theory," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 58(i06).
    11. Penny Bee & Chris Gibbons & Patrick Callaghan & Claire Fraser & Karina Lovell, 2016. "Evaluating and Quantifying User and Carer Involvement in Mental Health Care Planning (EQUIP): Co-Development of a New Patient-Reported Outcome Measure," PLOS ONE, Public Library of Science, vol. 11(3), pages 1-14, March.
    12. Tyrone B. Pretorius & P. Paul Heppner & Anita Padmanabhanunni & Serena Ann Isaacs, 2023. "The PSI-20: Development of a Viable Short Form Alternative of the Problem Solving Inventory Using Item Response Theory," SAGE Open, , vol. 13(4), pages 21582440231, December.
    13. Jules Ellis, 2014. "An Inequality for Correlations in Unidimensional Monotone Latent Variable Models for Binary Variables," Psychometrika, Springer;The Psychometric Society, vol. 79(2), pages 303-316, April.
    14. Wickelmaier, Florian & Strobl, Carolin & Zeileis, Achim, 2012. "Psychoco: Psychometric Computing in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 48(i01).
    15. Tendeiro, Jorge N. & Meijer, Rob R. & Niessen, A. Susan M., 2016. "PerFit: An R Package for Person-Fit Analysis in IRT," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 74(i05).
    16. Pascal Jordan & Meike C Shedden-Mora & Bernd Löwe, 2017. "Psychometric analysis of the Generalized Anxiety Disorder scale (GAD-7) in primary care using modern item response theory," PLOS ONE, Public Library of Science, vol. 12(8), pages 1-14, August.
    17. Markus Pauly & Maria Umlauft & Ali Ünlü, 2018. "Resampling-Based Inference Methods for Comparing Two Coefficients Alpha," Psychometrika, Springer;The Psychometric Society, vol. 83(1), pages 203-222, March.
    18. Anne-Linda Camerini & Peter J. Schulz, 2018. "Social Desirability Bias in Child-Report Social Well-Being: Evaluation of the Children’s Social Desirability Short Scale Using Item Response Theory and Examination of Its Impact on Self-Report Family ," Child Indicators Research, Springer;The International Society of Child Indicators (ISCI), vol. 11(4), pages 1159-1174, August.
    19. Simon Otjes, 2018. "What’s Left of the Left–Right Dimension? Why the Economic Policy Positions of Europeans Do Not Fit the Left–Right Dimension," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 136(2), pages 645-662, April.
    20. Rudy Ligtvoet, 2022. "Incomplete Tests of Conditional Association for the Assessment of Model Assumptions," Psychometrika, Springer;The Psychometric Society, vol. 87(4), pages 1214-1237, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:qualqt:v:54:y:2020:i:4:d:10.1007_s11135-020-00986-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.