IDEAS home Printed from https://ideas.repec.org/a/spr/metron/v76y2018i3d10.1007_s40300-018-0145-3.html
   My bibliography  Save this article

Fisher information matrix of binary time series

Author

Listed:
  • Xu Gao

    (University of California)

  • Daniel Gillen

    (University of California)

  • Hernando Ombao

    (King Abdullah University of Science and Technology)

Abstract

A common approach to analyzing categorical correlated time series data is to fit a generalized linear model (GLM) with past data as covariate inputs. There remain challenges to conducting inference for time series with short length. By treating the historical data as covariate inputs, standard errors of estimates of GLM parameters computed from the empirical Fisher information do not fully account the auto-correlation in the data. To overcome this serious limitation, we derive the exact conditional Fisher information matrix of a general logistic autoregressive model with endogenous covariates for any series length T. Moreover, we also develop an iterative computational formula that allows for relatively easy implementation of the proposed estimator. Our simulation studies show that confidence intervals derived using the exact Fisher information matrix tend to be narrower than those utilizing the empirical Fisher information matrix while maintaining type I error rates at or below nominal levels. Further, we establish that, as T tends to infinity, the exact Fisher information matrix approaches the asymptotic Fisher information matrix previously derived for binary time series data. The developed exact conditional Fisher information matrix is applied to time-series data on respiratory rate among a cohort of expectant mothers where it is found to provide narrower confidence intervals for functionals of scientific interest and lead to greater statistical power when compared to the empirical Fisher information matrix.

Suggested Citation

  • Xu Gao & Daniel Gillen & Hernando Ombao, 2018. "Fisher information matrix of binary time series," METRON, Springer;Sapienza Università di Roma, vol. 76(3), pages 287-304, December.
  • Handle: RePEc:spr:metron:v:76:y:2018:i:3:d:10.1007_s40300-018-0145-3
    DOI: 10.1007/s40300-018-0145-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s40300-018-0145-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s40300-018-0145-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ludwig Fahrmeir & Heinz Kaufmann, 1987. "Regression Models For Non‐Stationary Categorical Time Series," Journal of Time Series Analysis, Wiley Blackwell, vol. 8(2), pages 147-160, March.
    2. Chen, Peng & Jiao, Junfeng & Xu, Mengyuan & Gao, Xu & Bischak, Chris, 2018. "Promoting active student travel: A longitudinal study," Journal of Transport Geography, Elsevier, vol. 70(C), pages 265-274.
    3. Fokianos, Konstantinos & Kedem, Benjamin, 1998. "Prediction and Classification of Non-stationary Categorical Time Series," Journal of Multivariate Analysis, Elsevier, vol. 67(2), pages 277-296, November.
    4. Alan Agresti & Yongyi Min, 2001. "On Small-Sample Confidence Intervals for Parameters in Discrete Distributions," Biometrics, The International Biometric Society, vol. 57(3), pages 963-971, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ginger M. Davis & Katherine B. Ensor, 2007. "Multivariate Time‐Series Analysis With Categorical and Continuous Variables in an Lstr Model," Journal of Time Series Analysis, Wiley Blackwell, vol. 28(6), pages 867-885, November.
    2. Pruscha Helmut & Göttlein Axel, 2003. "Forecasting of Categorical Time Series Using a Regression Model," Stochastics and Quality Control, De Gruyter, vol. 18(2), pages 223-240, January.
    3. Konstantinos Fokianos, 2002. "Power Divergence Family of Tests for Categorical Time Series Models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 54(3), pages 543-564, September.
    4. Zhen, X. & Basawa, I.V., 2009. "Observation-driven generalized state space models for categorical time series," Statistics & Probability Letters, Elsevier, vol. 79(24), pages 2462-2468, December.
    5. Heikki Kauppi, 2008. "Yield-Curve Based Probit Models for Forecasting U.S. Recessions: Stability and Dynamics," Discussion Papers 31, Aboa Centre for Economics.
    6. Zhen, X. & Basawa, I.V., 2009. "Categorical time series models for contingency tables," Statistics & Probability Letters, Elsevier, vol. 79(10), pages 1331-1336, May.
    7. Yuichi Goto & Masanobu Taniguchi, 2020. "Discriminant analysis based on binary time series," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 83(5), pages 569-595, July.
    8. Joseph B. Lang, 2017. "Mean-Minimum Exact Confidence Intervals," The American Statistician, Taylor & Francis Journals, vol. 71(4), pages 354-368, October.
    9. H. Kaufmann, 1988. "On existence and uniqueness of maximum likelihood estimates in quantal and ordinal response models," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 35(1), pages 291-313, December.
    10. Martin Biehler & Heinz Holling & Philipp Doebler, 2015. "Saddlepoint Approximations of the Distribution of the Person Parameter in the Two Parameter Logistic Model," Psychometrika, Springer;The Psychometric Society, vol. 80(3), pages 665-688, September.
    11. Moysiadis, Theodoros & Fokianos, Konstantinos, 2014. "On binary and categorical time series models with feedback," Journal of Multivariate Analysis, Elsevier, vol. 131(C), pages 209-228.
    12. Moritz Berger & Gerhard Tutz, 2021. "Transition models for count data: a flexible alternative to fixed distribution models," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 30(4), pages 1259-1283, October.
    13. Maria Cieśla & Elżbieta Macioszek, 2022. "The Perspective Projects Promoting Sustainable Mobility by Active Travel to School on the Example of the Southern Poland Region," Sustainability, MDPI, vol. 14(16), pages 1-18, August.
    14. Dongyuan Wu & Guogen Shan, 2024. "Score confidence interval with continuity correction for ratio of two independent proportions," METRON, Springer;Sapienza Università di Roma, vol. 82(2), pages 183-199, August.
    15. Xiaofeng Ji & Haotian Guan & Mengyuan Lu & Fang Chen & Wenwen Qin, 2022. "International Research Progress in School Travel and Behavior: A Literature Review and Bibliometric Analysis," Sustainability, MDPI, vol. 14(14), pages 1-25, July.
    16. Brajendra C Sutradhar, 2018. "A Parameter Dimension-Split Based Asymptotic Regression Estimation Theory for a Multinomial Panel Data Model," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 80(2), pages 301-329, August.
    17. Martin Andres, A. & Herranz Tejedor, I., 2004. "Exact unconditional non-classical tests on the difference of two proportions," Computational Statistics & Data Analysis, Elsevier, vol. 45(2), pages 373-388, March.
    18. Rickey E. Carter & Yan Lin & Stuart R. Lipsitz & Robert G. Newcombe & Kathie L. Hermayer, 2010. "Relative risk estimated from the ratio of two median unbiased estimates," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 59(4), pages 657-671, August.
    19. Chiranjit Dutta & Nalini Ravishanker & Sumanta Basu, 2022. "Modeling Multivariate Positive-Valued Time Series Using R-INLA," Papers 2206.05374, arXiv.org, revised Jul 2022.
    20. Konstantinos Fokianos & Benjamin Kedem, 2004. "Partial Likelihood Inference For Time Series Following Generalized Linear Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 25(2), pages 173-197, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:metron:v:76:y:2018:i:3:d:10.1007_s40300-018-0145-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.