IDEAS home Printed from https://ideas.repec.org/a/spr/stmapp/v30y2021i1d10.1007_s10260-020-00519-5.html
   My bibliography  Save this article

Bayesian analysis of ranking data with the Extended Plackett–Luce model

Author

Listed:
  • Cristina Mollica

    (Sapienza University of Rome)

  • Luca Tardella

    (Sapienza University of Rome)

Abstract

Multistage ranking models, including the popular Plackett–Luce distribution (PL), rely on the assumption that the ranking process is performed sequentially, by assigning the positions from the top to the bottom one (forward order). A recent contribution to the ranking literature relaxed this assumption with the addition of the discrete-valued reference order parameter, yielding the novel Extended Plackett–Luce model (EPL). Inference on the EPL and its generalization into a finite mixture framework was originally addressed from the frequentist perspective. In this work, we propose the Bayesian estimation of the EPL in order to address more directly and efficiently the inference on the additional discrete-valued parameter and the assessment of its estimation uncertainty, possibly uncovering potential idiosyncratic drivers in the formation of preferences. We overcome initial difficulties in employing a standard Gibbs sampling strategy to approximate the posterior distribution of the EPL by combining the data augmentation procedure and the conjugacy of the Gamma prior distribution with a tuned joint Metropolis–Hastings algorithm within Gibbs. The effectiveness and usefulness of the proposal is illustrated with applications to simulated and real datasets.

Suggested Citation

  • Cristina Mollica & Luca Tardella, 2021. "Bayesian analysis of ranking data with the Extended Plackett–Luce model," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 30(1), pages 175-194, March.
  • Handle: RePEc:spr:stmapp:v:30:y:2021:i:1:d:10.1007_s10260-020-00519-5
    DOI: 10.1007/s10260-020-00519-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10260-020-00519-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10260-020-00519-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Philip L. H. Yu & K. F. Lam & S. M. Lo, 2005. "Factor analysis for ranked data with application to a job selection attitude survey," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 168(3), pages 583-597, July.
    2. R. L. Plackett, 1975. "The Analysis of Permutations," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 24(2), pages 193-202, June.
    3. Cristina Mollica & Luca Tardella, 2017. "Bayesian Plackett–Luce Mixture Models for Partially Ranked Data," Psychometrika, Springer;The Psychometric Society, vol. 82(2), pages 442-458, June.
    4. David J. Spiegelhalter & Nicola G. Best & Bradley P. Carlin & Angelika Van Der Linde, 2002. "Bayesian measures of model complexity and fit," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(4), pages 583-639, October.
    5. Isobel Claire Gormley & Thomas Brendan Murphy, 2006. "Analysis of Irish third‐level college applications data," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 169(2), pages 361-379, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cristina Mollica & Luca Tardella, 2017. "Bayesian Plackett–Luce Mixture Models for Partially Ranked Data," Psychometrika, Springer;The Psychometric Society, vol. 82(2), pages 442-458, June.
    2. Pierpaolo D’Urso & Vincenzina Vitale, 2022. "A Kemeny Distance-Based Robust Fuzzy Clustering for Preference Data," Journal of Classification, Springer;The Classification Society, vol. 39(3), pages 600-647, November.
    3. Heather L. Turner & Jacob Etten & David Firth & Ioannis Kosmidis, 2020. "Modelling rankings in R: the PlackettLuce package," Computational Statistics, Springer, vol. 35(3), pages 1027-1057, September.
    4. Biernacki, Christophe & Jacques, Julien, 2013. "A generative model for rank data based on insertion sort algorithm," Computational Statistics & Data Analysis, Elsevier, vol. 58(C), pages 162-176.
    5. Marco Berrettini & Giuliano Galimberti & Saverio Ranciati, 2023. "Semiparametric finite mixture of regression models with Bayesian P-splines," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 17(3), pages 745-775, September.
    6. Buddhavarapu, Prasad & Bansal, Prateek & Prozzi, Jorge A., 2021. "A new spatial count data model with time-varying parameters," Transportation Research Part B: Methodological, Elsevier, vol. 150(C), pages 566-586.
    7. Mumtaz, Haroon & Theodoridis, Konstantinos, 2017. "Common and country specific economic uncertainty," Journal of International Economics, Elsevier, vol. 105(C), pages 205-216.
    8. Jesse Elliott & Zemin Bai & Shu-Ching Hsieh & Shannon E Kelly & Li Chen & Becky Skidmore & Said Yousef & Carine Zheng & David J Stewart & George A Wells, 2020. "ALK inhibitors for non-small cell lung cancer: A systematic review and network meta-analysis," PLOS ONE, Public Library of Science, vol. 15(2), pages 1-18, February.
    9. Christina Leuker & Thorsten Pachur & Ralph Hertwig & Timothy J. Pleskac, 2019. "Do people exploit risk–reward structures to simplify information processing in risky choice?," Journal of the Economic Science Association, Springer;Economic Science Association, vol. 5(1), pages 76-94, August.
    10. Francois Olivier & Laval Guillaume, 2011. "Deviance Information Criteria for Model Selection in Approximate Bayesian Computation," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 10(1), pages 1-25, July.
    11. Raggi, Davide & Bordignon, Silvano, 2012. "Long memory and nonlinearities in realized volatility: A Markov switching approach," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3730-3742.
    12. Angelica Gianfreda & Francesco Ravazzolo & Luca Rossini, 2023. "Large Time‐Varying Volatility Models for Hourly Electricity Prices," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 85(3), pages 545-573, June.
    13. Rubio, F.J. & Steel, M.F.J., 2011. "Inference for grouped data with a truncated skew-Laplace distribution," Computational Statistics & Data Analysis, Elsevier, vol. 55(12), pages 3218-3231, December.
    14. Alessandri, Piergiorgio & Mumtaz, Haroon, 2019. "Financial regimes and uncertainty shocks," Journal of Monetary Economics, Elsevier, vol. 101(C), pages 31-46.
    15. Padilla, Juan L. & Azevedo, Caio L.N. & Lachos, Victor H., 2018. "Multidimensional multiple group IRT models with skew normal latent trait distributions," Journal of Multivariate Analysis, Elsevier, vol. 167(C), pages 250-268.
    16. Svetlana V. Tishkovskaya & Paul G. Blackwell, 2021. "Bayesian estimation of heterogeneous environments from animal movement data," Environmetrics, John Wiley & Sons, Ltd., vol. 32(6), September.
    17. David Macro & Jeroen Weesie, 2016. "Inequalities between Others Do Matter: Evidence from Multiplayer Dictator Games," Games, MDPI, vol. 7(2), pages 1-23, April.
    18. Tautenhahn, Susanne & Heilmeier, Hermann & Jung, Martin & Kahl, Anja & Kattge, Jens & Moffat, Antje & Wirth, Christian, 2012. "Beyond distance-invariant survival in inverse recruitment modeling: A case study in Siberian Pinus sylvestris forests," Ecological Modelling, Elsevier, vol. 233(C), pages 90-103.
    19. Julian P. T. Higgins & Simon G. Thompson & David J. Spiegelhalter, 2009. "A re‐evaluation of random‐effects meta‐analysis," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 172(1), pages 137-159, January.
    20. Simon Mak & Derek Bingham & Yi Lu, 2016. "A regional compound Poisson process for hurricane and tropical storm damage," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 65(5), pages 677-703, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:stmapp:v:30:y:2021:i:1:d:10.1007_s10260-020-00519-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.