IDEAS home Printed from https://ideas.repec.org/a/spr/psycho/v81y2016i1p60-89.html
   My bibliography  Save this article

On the Asymptotic Relative Efficiency of Planned Missingness Designs

Author

Listed:
  • Mijke Rhemtulla
  • Victoria Savalei
  • Todd Little

Abstract

In planned missingness (PM) designs, certain data are set a priori to be missing. PM designs can increase validity and reduce cost; however, little is known about the loss of efficiency that accompanies these designs. The present paper compares PM designs to reduced sample (RN) designs that have the same total number of data points concentrated in fewer participants. In 4 studies, we consider models for both observed and latent variables, designs that do or do not include an “X set” of variables with complete data, and a full range of between- and within-set correlation values. All results are obtained using asymptotic relative efficiency formulas, and thus no data are generated; this novel approach allows us to examine whether PM designs have theoretical advantages over RN designs removing the impact of sampling error. Our primary findings are that (a) in manifest variable regression models, estimates of regression coefficients have much lower relative efficiency in PM designs as compared to RN designs, (b) relative efficiency of factor correlation or latent regression coefficient estimates is maximized when the indicators of each latent variable come from different sets, and (c) the addition of an X set improves efficiency in manifest variable regression models only for the parameters that directly involve the X-set variables, but it substantially improves efficiency of most parameters in latent variable models. We conclude that PM designs can be beneficial when the model of interest is a latent variable model; recommendations are made for how to optimize such a design. Copyright The Psychometric Society 2016

Suggested Citation

  • Mijke Rhemtulla & Victoria Savalei & Todd Little, 2016. "On the Asymptotic Relative Efficiency of Planned Missingness Designs," Psychometrika, Springer;The Psychometric Society, vol. 81(1), pages 60-89, March.
  • Handle: RePEc:spr:psycho:v:81:y:2016:i:1:p:60-89
    DOI: 10.1007/s11336-014-9422-0
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11336-014-9422-0
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11336-014-9422-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. A. Mooijaart & P.M. Bentler, 1991. "Robustness of normal theory statistics in structural equation models," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 45(2), pages 159-171, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Josephine Wood & Gregory J. Matthews & Jennifer Pellowski & Ofer Harel, 2019. "Comparing Different Planned Missingness Designs in Longitudinal Studies," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 81(2), pages 226-250, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pison, Greet & Rousseeuw, Peter J. & Filzmoser, Peter & Croux, Christophe, 2003. "Robust factor analysis," Journal of Multivariate Analysis, Elsevier, vol. 84(1), pages 145-172, January.
    2. Ke-Hai Yuan & Yubin Tian & Hirokazu Yanagihara, 2015. "Empirical Correction to the Likelihood Ratio Statistic for Structural Equation Modeling with Many Variables," Psychometrika, Springer;The Psychometric Society, vol. 80(2), pages 379-405, June.
    3. Ke-Hai Yuan & Peter M. Bentler & Wei Zhang, 2005. "The Effect of Skewness and Kurtosis on Mean and Covariance Structure Analysis," Sociological Methods & Research, , vol. 34(2), pages 240-258, November.
    4. Prokhorov, Artem, 2009. "On relative efficiency of quasi-MLE and GMM estimators of covariance structure models," Economics Letters, Elsevier, vol. 102(1), pages 4-6, January.
    5. Terje Skjerpen, 2008. "Engel elasticities, pseudo-maximum likelihood estimation and bootstrapped standard errors. A case study," Discussion Papers 532, Statistics Norway, Research Department.
    6. Kano, Yutaka & Takai, Keiji, 2011. "Analysis of NMAR missing data without specifying missing-data mechanisms in a linear latent variate model," Journal of Multivariate Analysis, Elsevier, vol. 102(9), pages 1241-1255, October.
    7. Satorra, Albert & Neudecker, Heinz, 1994. "On the Asymptotic Optimality of Alternative Minimum-Distance Estimators in Linear Latent-Variable Models," Econometric Theory, Cambridge University Press, vol. 10(5), pages 867-883, December.
    8. Albert Satorra, 1992. "Multi-sample analysis of moment-structures: Asymptotic validity of inferences based on second-order moments," Economics Working Papers 16, Department of Economics and Business, Universitat Pompeu Fabra.
    9. Yutaka Kano & Masamori Ihara, 1994. "Identification of inconsistent variates in factor analysis," Psychometrika, Springer;The Psychometric Society, vol. 59(1), pages 5-20, March.
    10. Hildebrandt, Lutz & Görz, Nicole, 1999. "Zum Stand der Kausalanalyse mit Strukturgleichungsmodellen: Methodische Trends und Software-Entwicklungen," SFB 373 Discussion Papers 1999,46, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
    11. Yuan, Ke-Hai & Bentler, Peter M., 2005. "Asymptotic robustness of the normal theory likelihood ratio statistic for two-level covariance structure models," Journal of Multivariate Analysis, Elsevier, vol. 94(2), pages 328-343, June.
    12. Ogasawara, Haruhiko, 2005. "Asymptotic robustness of the asymptotic biases in structural equation modeling," Computational Statistics & Data Analysis, Elsevier, vol. 49(3), pages 771-783, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:psycho:v:81:y:2016:i:1:p:60-89. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.