IDEAS home Printed from https://ideas.repec.org/a/spr/psycho/v88y2023i1d10.1007_s11336-022-09898-y.html
   My bibliography  Save this article

Partial Identification of Latent Correlations with Ordinal Data

Author

Listed:
  • Jonas Moss

    (BI Norwegian Business School)

  • Steffen Grønneberg

    (BI Norwegian Business School)

Abstract

The polychoric correlation is a popular measure of association for ordinal data. It estimates a latent correlation, i.e., the correlation of a latent vector. This vector is assumed to be bivariate normal, an assumption that cannot always be justified. When bivariate normality does not hold, the polychoric correlation will not necessarily approximate the true latent correlation, even when the observed variables have many categories. We calculate the sets of possible values of the latent correlation when latent bivariate normality is not necessarily true, but at least the latent marginals are known. The resulting sets are called partial identification sets, and are shown to shrink to the true latent correlation as the number of categories increase. Moreover, we investigate partial identification under the additional assumption that the latent copula is symmetric, and calculate the partial identification set when one variable is ordinal and another is continuous. We show that little can be said about latent correlations, unless we have impractically many categories or we know a great deal about the distribution of the latent vector. An open-source R package is available for applying our results.

Suggested Citation

  • Jonas Moss & Steffen Grønneberg, 2023. "Partial Identification of Latent Correlations with Ordinal Data," Psychometrika, Springer;The Psychometric Society, vol. 88(1), pages 241-252, March.
  • Handle: RePEc:spr:psycho:v:88:y:2023:i:1:d:10.1007_s11336-022-09898-y
    DOI: 10.1007/s11336-022-09898-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11336-022-09898-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11336-022-09898-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tamer, Elie, 2010. "Partial Identification in Econometrics," Scholarly Articles 34728615, Harvard University Department of Economics.
    2. Genest, Christian & Nešlehová, Johanna, 2007. "A Primer on Copulas for Count Data," ASTIN Bulletin, Cambridge University Press, vol. 37(2), pages 475-515, November.
    3. Dungang Liu & Shaobo Li & Yan Yu & Irini Moustaki, 2021. "Assessing Partial Association Between Ordinal Variables: Quantification, Visualization, and Hypothesis Testing," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 116(534), pages 955-968, April.
    4. Ulf Olsson & Fritz Drasgow & Neil Dorans, 1982. "The polyserial correlation coefficient," Psychometrika, Springer;The Psychometric Society, vol. 47(3), pages 337-347, September.
    5. Aristidis Nikoloulopoulos & Harry Joe, 2015. "Factor Copula Models for Item Response Data," Psychometrika, Springer;The Psychometric Society, vol. 80(1), pages 126-150, March.
    6. Yoshio Takane & Jan Leeuw, 1987. "On the relationship between item response theory and factor analysis of discretized variables," Psychometrika, Springer;The Psychometric Society, vol. 52(3), pages 393-408, September.
    7. Njål Foldnes & Steffen Grønneberg, 2019. "On Identification and Non-normal Simulation in Ordinal Covariance and Item Response Models," Psychometrika, Springer;The Psychometric Society, vol. 84(4), pages 1000-1017, December.
    8. Krupskii, Pavel & Joe, Harry, 2013. "Factor copula models for multivariate data," Journal of Multivariate Analysis, Elsevier, vol. 120(C), pages 85-101.
    9. Albert Maydeu-Olivares, 2006. "Limited information estimation and testing of discretized multivariate normal structural models," Psychometrika, Springer;The Psychometric Society, vol. 71(1), pages 57-77, March.
    10. Krupskii, Pavel & Joe, Harry, 2015. "Structured factor copula models: Theory, inference and computation," Journal of Multivariate Analysis, Elsevier, vol. 138(C), pages 53-73.
    11. Ulf Olsson, 1979. "Maximum likelihood estimation of the polychoric correlation coefficient," Psychometrika, Springer;The Psychometric Society, vol. 44(4), pages 443-460, December.
    12. Peter Tankov, 2010. "Improved Frechet bounds and model-free pricing of multi-asset options," Papers 1004.4153, arXiv.org, revised Mar 2011.
    13. Rosseel, Yves, 2012. "lavaan: An R Package for Structural Equation Modeling," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 48(i02).
    14. Denuit, Michel & Lambert, Philippe, 2005. "Constraints on concordance measures in bivariate discrete data," Journal of Multivariate Analysis, Elsevier, vol. 93(1), pages 40-57, March.
    15. Genest, Christian & Nešlehová, Johanna G. & Rémillard, Bruno, 2017. "Asymptotic behavior of the empirical multilinear copula process under broad conditions," Journal of Multivariate Analysis, Elsevier, vol. 159(C), pages 82-110.
    16. Stanislav Kolenikov & Gustavo Angeles, 2009. "Socioeconomic Status Measurement With Discrete Proxy Variables: Is Principal Component Analysis A Reliable Answer?," Review of Income and Wealth, International Association for Research in Income and Wealth, vol. 55(1), pages 128-165, March.
    17. Steffen Grønneberg & Jonas Moss & Njål Foldnes, 2020. "Partial Identification of Latent Correlations with Binary Data," Psychometrika, Springer;The Psychometric Society, vol. 85(4), pages 1028-1051, December.
    18. Elie Tamer, 2010. "Partial Identification in Econometrics," Annual Review of Economics, Annual Reviews, vol. 2(1), pages 167-195, September.
    19. Albert Satorra, 1989. "Alternative test criteria in covariance structure analysis: A unified approach," Psychometrika, Springer;The Psychometric Society, vol. 54(1), pages 131-151, March.
    20. Anders Christoffersson, 1975. "Factor analysis of dichotomized variables," Psychometrika, Springer;The Psychometric Society, vol. 40(1), pages 5-32, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Steffen Grønneberg & Jonas Moss & Njål Foldnes, 2020. "Partial Identification of Latent Correlations with Binary Data," Psychometrika, Springer;The Psychometric Society, vol. 85(4), pages 1028-1051, December.
    2. Njål Foldnes & Steffen Grønneberg, 2019. "On Identification and Non-normal Simulation in Ordinal Covariance and Item Response Models," Psychometrika, Springer;The Psychometric Society, vol. 84(4), pages 1000-1017, December.
    3. Zhang, Xi & Li, Jian, 2018. "Credit and market risks measurement in carbon financing for Chinese banks," Energy Economics, Elsevier, vol. 76(C), pages 549-557.
    4. Alexander Robitzsch, 2024. "A Comparison of Limited Information Estimation Methods for the Two-Parameter Normal-Ogive Model with Locally Dependent Items," Stats, MDPI, vol. 7(3), pages 1-16, June.
    5. Sayed H. Kadhem & Aristidis K. Nikoloulopoulos, 2023. "Factor Tree Copula Models for Item Response Data," Psychometrika, Springer;The Psychometric Society, vol. 88(3), pages 776-802, September.
    6. Shaobo Jin & Fan Yang-Wallentin & Kenneth A. Bollen, 2021. "A unified model-implied instrumental variable approach for structural equation modeling with mixed variables," Psychometrika, Springer;The Psychometric Society, vol. 86(2), pages 564-594, June.
    7. Oh, Rosy & Jeong, Himchan & Ahn, Jae Youn & Valdez, Emiliano A., 2021. "A multi-year microlevel collective risk model," Insurance: Mathematics and Economics, Elsevier, vol. 100(C), pages 309-328.
    8. Michael Stanley Smith, 2021. "Implicit Copulas: An Overview," Papers 2109.04718, arXiv.org.
    9. Sayed H. Kadhem & Aristidis K. Nikoloulopoulos, 2023. "Bi-factor and Second-Order Copula Models for Item Response Data," Psychometrika, Springer;The Psychometric Society, vol. 88(1), pages 132-157, March.
    10. Yang Yixin & Lü Xin & Ma Jian & Qiao Han, 2014. "A Robust Factor Analysis Model for Dichotomous Data," Journal of Systems Science and Information, De Gruyter, vol. 2(5), pages 437-450, October.
    11. Aristidis Nikoloulopoulos & Harry Joe, 2015. "Factor Copula Models for Item Response Data," Psychometrika, Springer;The Psychometric Society, vol. 80(1), pages 126-150, March.
    12. Geenens Gery, 2020. "Copula modeling for discrete random vectors," Dependence Modeling, De Gruyter, vol. 8(1), pages 417-440, January.
    13. Florian Schuberth & Jörg Henseler & Theo K. Dijkstra, 2018. "Partial least squares path modeling using ordinal categorical indicators," Quality & Quantity: International Journal of Methodology, Springer, vol. 52(1), pages 9-35, January.
    14. Pan Shenyi & Joe Harry, 2024. "Assessing copula models for mixed continuous-ordinal variables," Dependence Modeling, De Gruyter, vol. 12(1), pages 1-18.
    15. Nguyen, Hoang & Ausín, M. Concepción & Galeano, Pedro, 2020. "Variational inference for high dimensional structured factor copulas," Computational Statistics & Data Analysis, Elsevier, vol. 151(C).
    16. Dylan Molenaar, 2015. "Heteroscedastic Latent Trait Models for Dichotomous Data," Psychometrika, Springer;The Psychometric Society, vol. 80(3), pages 625-644, September.
    17. Steffen Grønneberg & Njål Foldnes, 2019. "A Problem with Discretizing Vale–Maurelli in Simulation Studies," Psychometrika, Springer;The Psychometric Society, vol. 84(2), pages 554-561, June.
    18. Ting Wang & Carolin Strobl & Achim Zeileis & Edgar C. Merkle, 2018. "Score-Based Tests of Differential Item Functioning via Pairwise Maximum Likelihood Estimation," Psychometrika, Springer;The Psychometric Society, vol. 83(1), pages 132-155, March.
    19. Piotr Tarka, 2018. "An overview of structural equation modeling: its beginnings, historical development, usefulness and controversies in the social sciences," Quality & Quantity: International Journal of Methodology, Springer, vol. 52(1), pages 313-354, January.
    20. Nagler, Thomas, 2018. "A generic approach to nonparametric function estimation with mixed data," Statistics & Probability Letters, Elsevier, vol. 137(C), pages 326-330.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:psycho:v:88:y:2023:i:1:d:10.1007_s11336-022-09898-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.