IDEAS home Printed from https://ideas.repec.org/a/spr/psycho/v51y1986i3p415-428.html
   My bibliography  Save this article

Dynamic structural systems under indirect observation: identifiability and estimation aspects from a system theoretic perspective

Author

Listed:
  • Pieter Otter

Abstract

No abstract is available for this item.

Suggested Citation

  • Pieter Otter, 1986. "Dynamic structural systems under indirect observation: identifiability and estimation aspects from a system theoretic perspective," Psychometrika, Springer;The Psychometric Society, vol. 51(3), pages 415-428, September.
  • Handle: RePEc:spr:psycho:v:51:y:1986:i:3:p:415-428
    DOI: 10.1007/BF02294064
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/BF02294064
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/BF02294064?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Watson, Mark W. & Engle, Robert F., 1983. "Alternative algorithms for the estimation of dynamic factor, mimic and varying coefficient regression models," Journal of Econometrics, Elsevier, vol. 23(3), pages 385-400, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jacobs, Jan P.A.M. & van Norden, Simon, 2011. "Modeling data revisions: Measurement error and dynamics of "true" values," Journal of Econometrics, Elsevier, vol. 161(2), pages 101-109, April.
    2. Fei Gu & Kristopher J. Preacher & Emilio Ferrer, 2014. "A State Space Modeling Approach to Mediation Analysis," Journal of Educational and Behavioral Statistics, , vol. 39(2), pages 117-143, April.
    3. Catrien Bijleveld & Jan Leeuw, 1991. "Fitting longitudinal reduced-rank regression models by alternating least squares," Psychometrika, Springer;The Psychometric Society, vol. 56(3), pages 433-447, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jerry A. Hausman & Mark W. Watson, 1983. "Seasonal Adjustment with Measurement Error Present," NBER Working Papers 1133, National Bureau of Economic Research, Inc.
    2. Mazzocchi, Mario, 2006. "Time patterns in UK demand for alcohol and tobacco: an application of the EM algorithm," Computational Statistics & Data Analysis, Elsevier, vol. 50(9), pages 2191-2205, May.
    3. Muñoz, Mª Pilar & Márquez, María Dolores & Sánchez, Josep A., 2011. "Contagion between United States and european markets during the recent crises," MPRA Paper 35993, University Library of Munich, Germany.
    4. Catherine Doz & Domenico Giannone & Lucrezia Reichlin, 2012. "A Quasi–Maximum Likelihood Approach for Large, Approximate Dynamic Factor Models," The Review of Economics and Statistics, MIT Press, vol. 94(4), pages 1014-1024, November.
    5. Tobias Hartl & Roland Jucknewitz, 2022. "Approximate state space modelling of unobserved fractional components," Econometric Reviews, Taylor & Francis Journals, vol. 41(1), pages 75-98, January.
    6. Proietti, Tommaso, 2008. "Estimation of Common Factors under Cross-Sectional and Temporal Aggregation Constraints: Nowcasting Monthly GDP and its Main Components," MPRA Paper 6860, University Library of Munich, Germany.
    7. António Rua & Francisco Craveiro Dias & Maximiano Pinheiro, 2014. "Forecasting Portuguese GDP with factor models," Economic Bulletin and Financial Stability Report Articles and Banco de Portugal Economic Studies, Banco de Portugal, Economics and Research Department.
    8. Dickhaus, Thorsten & Sirotko-Sibirskaya, Natalia, 2019. "Simultaneous statistical inference in dynamic factor models: Chi-square approximation and model-based bootstrap," Computational Statistics & Data Analysis, Elsevier, vol. 129(C), pages 30-46.
    9. Alexander Tsyplakov, 2011. "An introduction to state space modeling (in Russian)," Quantile, Quantile, issue 9, pages 1-24, July.
    10. Pan, Huiran & Wang, Chun, 2012. "Government debt in the euro area—Evidence from dynamic factor analysis," Economics Letters, Elsevier, vol. 115(2), pages 272-275.
    11. Hindrayanto, Irma & Koopman, Siem Jan & de Winter, Jasper, 2016. "Forecasting and nowcasting economic growth in the euro area using factor models," International Journal of Forecasting, Elsevier, vol. 32(4), pages 1284-1305.
    12. Shikong (Scott) Luo & Jun Ma, 2024. "International Housing Markets and the U.S. Subprime Crisis," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 56(2-3), pages 647-669, March.
    13. Samvel S. Lazaryan & Nikita E. German, 2018. "Forecasting Current GDP Dynamics With Google Search Data," Finansovyj žhurnal — Financial Journal, Financial Research Institute, Moscow 125375, Russia, issue 6, pages 83-94, December.
    14. Norrbin, Stefan C. & Schlagenhauf, Don E., 1996. "The role of international factors in the business cycle: A multi-country study," Journal of International Economics, Elsevier, vol. 40(1-2), pages 85-104, February.
    15. Bragoli, Daniela & Modugno, Michele, 2017. "A now-casting model for Canada: Do U.S. variables matter?," International Journal of Forecasting, Elsevier, vol. 33(4), pages 786-800.
    16. Poncela, Pilar, 1996. "Pooling information and forecasting with dynamic factor analysis," DES - Working Papers. Statistics and Econometrics. WS 10709, Universidad Carlos III de Madrid. Departamento de Estadística.
    17. Catherine Doz & Peter Fuleky, 2019. "Dynamic Factor Models," Working Papers 2019-4, University of Hawaii Economic Research Organization, University of Hawaii at Manoa.
    18. Stock, J.H. & Watson, M.W., 2016. "Dynamic Factor Models, Factor-Augmented Vector Autoregressions, and Structural Vector Autoregressions in Macroeconomics," Handbook of Macroeconomics, in: J. B. Taylor & Harald Uhlig (ed.), Handbook of Macroeconomics, edition 1, volume 2, chapter 0, pages 415-525, Elsevier.
    19. Yasutomo Murasawa & Roberto S. Mariano, 2004. "Constructing a Coincident Index of Business Cycles Without Assuming a One-Factor Model," Econometric Society 2004 Far Eastern Meetings 710, Econometric Society.
    20. Diebold, Francis X & Rudebusch, Glenn D, 1996. "Measuring Business Cycles: A Modern Perspective," The Review of Economics and Statistics, MIT Press, vol. 78(1), pages 67-77, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:psycho:v:51:y:1986:i:3:p:415-428. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.