IDEAS home Printed from https://ideas.repec.org/a/spr/psycho/v37y1972i4p461-486.html
   My bibliography  Save this article

A monte carlo evaluation of three nonmetric multidimensional scaling algorithms

Author

Listed:
  • Ian Spence

Abstract

No abstract is available for this item.

Suggested Citation

  • Ian Spence, 1972. "A monte carlo evaluation of three nonmetric multidimensional scaling algorithms," Psychometrika, Springer;The Psychometric Society, vol. 37(4), pages 461-486, December.
  • Handle: RePEc:spr:psycho:v:37:y:1972:i:4:p:461-486
    DOI: 10.1007/BF02291222
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/BF02291222
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/BF02291222?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. J. Kruskal, 1964. "Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis," Psychometrika, Springer;The Psychometric Society, vol. 29(1), pages 1-27, March.
    2. Forrest Young, 1970. "Nonmetric multidimensional scaling: Recovery of metric information," Psychometrika, Springer;The Psychometric Society, vol. 35(4), pages 455-473, December.
    3. Charles Sherman, 1972. "Nonmetric multidimensional scaling: A monte carlo study of the basic parameters," Psychometrika, Springer;The Psychometric Society, vol. 37(3), pages 323-355, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yoshio Takane & Forrest Young & Jan Leeuw, 1977. "Nonmetric individual differences multidimensional scaling: An alternating least squares method with optimal scaling features," Psychometrika, Springer;The Psychometric Society, vol. 42(1), pages 7-67, March.
    2. Ian Spence & Stephan Lewandowsky, 1989. "Robust multidimensional scaling," Psychometrika, Springer;The Psychometric Society, vol. 54(3), pages 501-513, September.
    3. Robert MacCallum & Edwin Cornelius, 1977. "A monte carlo investigation of recovery of structure by alscal," Psychometrika, Springer;The Psychometric Society, vol. 42(3), pages 401-428, September.
    4. Forrest Young & Norman Cliff, 1972. "Interactive scaling with individual subjects," Psychometrika, Springer;The Psychometric Society, vol. 37(4), pages 385-415, December.
    5. Eliana Viviano & Luciana Aimone Gigio & Emanuela Ciapanna & Daniele Coin & Fabrizio Colonna & Federica Lagna & Raffaele Santioni, 2012. "The retail trade sector and the food industry in Italy," Questioni di Economia e Finanza (Occasional Papers) 119, Bank of Italy, Economic Research and International Relations Area.
    6. Rolf Langeheine, 1982. "Statistical evaluation of measures of fit in the Lingoes-Borg procrustean individual differences scaling," Psychometrika, Springer;The Psychometric Society, vol. 47(4), pages 427-442, December.
    7. Forrest Young & Cynthia Null, 1978. "Multidimensional scaling of nominal data: The recovery of metric information with alscal," Psychometrika, Springer;The Psychometric Society, vol. 43(3), pages 367-379, September.
    8. Roger Girard & Norman Cliff, 1976. "A monte carlo evaluation of interactive multidimensional scaling," Psychometrika, Springer;The Psychometric Society, vol. 41(1), pages 43-64, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Michael C. Hout & Corbin A. Cunningham & Arryn Robbins & Justin MacDonald, 2018. "Simulating the Fidelity of Data for Large Stimulus Set Sizes and Variable Dimension Estimation in Multidimensional Scaling," SAGE Open, , vol. 8(2), pages 21582440187, April.
    2. Roger Girard & Norman Cliff, 1976. "A monte carlo evaluation of interactive multidimensional scaling," Psychometrika, Springer;The Psychometric Society, vol. 41(1), pages 43-64, March.
    3. Joseph Zinnes & David MacKay, 1983. "Probabilistic multidimensional scaling: Complete and incomplete data," Psychometrika, Springer;The Psychometric Society, vol. 48(1), pages 27-48, March.
    4. Scott R. Rosas, 2017. "Multi-map comparison for group concept mapping: an approach for examining conceptual congruence through spatial correspondence," Quality & Quantity: International Journal of Methodology, Springer, vol. 51(6), pages 2421-2439, November.
    5. Forrest Young & Cynthia Null, 1978. "Multidimensional scaling of nominal data: The recovery of metric information with alscal," Psychometrika, Springer;The Psychometric Society, vol. 43(3), pages 367-379, September.
    6. Phipps Arabie, 1991. "Was euclid an unnecessarily sophisticated psychologist?," Psychometrika, Springer;The Psychometric Society, vol. 56(4), pages 567-587, December.
    7. George Rabinowitz, 1976. "A procedure for ordering object pairs consistent with the multidimensional unfolding model," Psychometrika, Springer;The Psychometric Society, vol. 41(3), pages 349-373, September.
    8. Roger Shepard, 1974. "Representation of structure in similarity data: Problems and prospects," Psychometrika, Springer;The Psychometric Society, vol. 39(4), pages 373-421, December.
    9. Giovanna Boccuzzo & Licia Maron, 2017. "Proposal of a composite indicator of job quality based on a measure of weighted distances," Quality & Quantity: International Journal of Methodology, Springer, vol. 51(5), pages 2357-2374, September.
    10. Wayne DeSarbo & Vithala Rao, 1984. "GENFOLD2: A set of models and algorithms for the general UnFOLDing analysis of preference/dominance data," Journal of Classification, Springer;The Classification Society, vol. 1(1), pages 147-186, December.
    11. Sudeep Bhatia, 2019. "Predicting Risk Perception: New Insights from Data Science," Management Science, INFORMS, vol. 65(8), pages 3800-3823, August.
    12. Jong-Seok Lee & Dan Zhu, 2012. "Shilling Attack Detection---A New Approach for a Trustworthy Recommender System," INFORMS Journal on Computing, INFORMS, vol. 24(1), pages 117-131, February.
    13. Simon Blanchard & Wayne DeSarbo & A. Atalay & Nukhet Harmancioglu, 2012. "Identifying consumer heterogeneity in unobserved categories," Marketing Letters, Springer, vol. 23(1), pages 177-194, March.
    14. H. Micko, 1970. "A “halo”-model for multidimensional ratio scaling," Psychometrika, Springer;The Psychometric Society, vol. 35(2), pages 199-227, June.
    15. Gert Storms, 1995. "On the robustness of maximum likelihood scaling for violations of the error model," Psychometrika, Springer;The Psychometric Society, vol. 60(2), pages 247-258, June.
    16. Michael Rennings & Philipp Baaden & Carolin Block & Marcus John & Stefanie Bröring, 2024. "Assessing emerging sustainability-oriented technologies: the case of precision agriculture," Scientometrics, Springer;Akadémiai Kiadó, vol. 129(6), pages 2969-2998, June.
    17. Ján Kulfan & Lenka Sarvašová & Michal Parák & Marek Dzurenko & Peter Zach, 2018. "Can late flushing trees avoid attack by moth larvae in temperate forests?," Plant Protection Science, Czech Academy of Agricultural Sciences, vol. 54(4), pages 272-283.
    18. Ma, Jie & Tse, Ying Kei & Wang, Xiaojun & Zhang, Minhao, 2019. "Examining customer perception and behaviour through social media research – An empirical study of the United Airlines overbooking crisis," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 127(C), pages 192-205.
    19. Muñoz-Mas, Rafael & Vezza, Paolo & Alcaraz-Hernández, Juan Diego & Martínez-Capel, Francisco, 2016. "Risk of invasion predicted with support vector machines: A case study on northern pike (Esox Lucius, L.) and bleak (Alburnus alburnus, L.)," Ecological Modelling, Elsevier, vol. 342(C), pages 123-134.
    20. Hyosun An & Sunghoon Kim & Yerim Choi, 2021. "Sportive Fashion Trend Reports: A Hybrid Style Analysis Based on Deep Learning Techniques," Sustainability, MDPI, vol. 13(17), pages 1-16, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:psycho:v:37:y:1972:i:4:p:461-486. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.