IDEAS home Printed from https://ideas.repec.org/a/spr/psycho/v40y1975i3p337-360.html
   My bibliography  Save this article

Solving implicit equations in psychometric data analysis

Author

Listed:
  • J. Ramsay

Abstract

No abstract is available for this item.

Suggested Citation

  • J. Ramsay, 1975. "Solving implicit equations in psychometric data analysis," Psychometrika, Springer;The Psychometric Society, vol. 40(3), pages 337-360, September.
  • Handle: RePEc:spr:psycho:v:40:y:1975:i:3:p:337-360
    DOI: 10.1007/BF02291762
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/BF02291762
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/BF02291762?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Louis Guttman, 1968. "A general nonmetric technique for finding the smallest coordinate space for a configuration of points," Psychometrika, Springer;The Psychometric Society, vol. 33(4), pages 469-506, December.
    2. C. Rao, 1955. "Estimation and tests of significance in factor analysis," Psychometrika, Springer;The Psychometric Society, vol. 20(2), pages 93-111, June.
    3. J. Carroll & Jih-Jie Chang, 1970. "Analysis of individual differences in multidimensional scaling via an n-way generalization of “Eckart-Young” decomposition," Psychometrika, Springer;The Psychometric Society, vol. 35(3), pages 283-319, September.
    4. K. Jöreskog, 1969. "A general approach to confirmatory maximum likelihood factor analysis," Psychometrika, Springer;The Psychometric Society, vol. 34(2), pages 183-202, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Christian Genest & Johanna G. Nešlehová, 2014. "A Conversation with James O. Ramsay," International Statistical Review, International Statistical Institute, vol. 82(2), pages 161-183, August.
    2. Herbert Hoijtink, 1990. "A latent trait model for dichotomous choice data," Psychometrika, Springer;The Psychometric Society, vol. 55(4), pages 641-656, December.
    3. P. Bentler, 1986. "Structural modeling and psychometrika: An historical perspective on growth and achievements," Psychometrika, Springer;The Psychometric Society, vol. 51(1), pages 35-51, March.
    4. Henk Kiers, 1990. "Majorization as a tool for optimizing a class of matrix functions," Psychometrika, Springer;The Psychometric Society, vol. 55(3), pages 417-428, September.
    5. Michael Greenacre & Michael Browne, 1986. "An efficient alternating least-squares algorithm to perform multidimensional unfolding," Psychometrika, Springer;The Psychometric Society, vol. 51(2), pages 241-250, June.
    6. Herbert Hoijtink & Ivo Molenaar, 1992. "Testing for DIF in a model with single peaked item characteristic curves: The parella model," Psychometrika, Springer;The Psychometric Society, vol. 57(3), pages 383-397, September.
    7. Henk Kiers & Jos Berge & Yoshio Takane & Jan Leeuw, 1990. "A generalization of Takane's algorithm for dedicom," Psychometrika, Springer;The Psychometric Society, vol. 55(1), pages 151-158, March.
    8. Robert Mislevy & Mark Wilson, 1996. "Marginal maximum likelihood estimation for a psychometric model of discontinuous development," Psychometrika, Springer;The Psychometric Society, vol. 61(1), pages 41-71, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yoshio Takane & Forrest Young & Jan Leeuw, 1977. "Nonmetric individual differences multidimensional scaling: An alternating least squares method with optimal scaling features," Psychometrika, Springer;The Psychometric Society, vol. 42(1), pages 7-67, March.
    2. Sik-Yum Lee, 1980. "Estimation of covariance structure models with parameters subject to functional restraints," Psychometrika, Springer;The Psychometric Society, vol. 45(3), pages 309-324, September.
    3. Ingwer Borg & James Lingoes, 1978. "What weight should weights have in individual differences scaling?," Quality & Quantity: International Journal of Methodology, Springer, vol. 12(3), pages 223-237, September.
    4. Yoshio Takane & J. Carroll, 1981. "Nonmetric maximum likelihood multidimensional scaling from directional rankings of similarities," Psychometrika, Springer;The Psychometric Society, vol. 46(4), pages 389-405, December.
    5. Kohn, Hans-Friedrich, 2006. "Combinatorial individual differences scaling within the city-block metric," Computational Statistics & Data Analysis, Elsevier, vol. 51(2), pages 931-946, November.
    6. Martin Young & Wayne DeSarbo, 1995. "A parametric procedure for ultrametric tree estimation from conditional rank order proximity data," Psychometrika, Springer;The Psychometric Society, vol. 60(1), pages 47-75, March.
    7. Abe, Makoto, 1998. "Error structure and identification condition in maximum likelihood nonmetric multidimensional scaling," European Journal of Operational Research, Elsevier, vol. 111(2), pages 216-227, December.
    8. Jacqueline Meulman & Peter Verboon, 1993. "Points of view analysis revisited: Fitting multidimensional structures to optimal distance components with cluster restrictions on the variables," Psychometrika, Springer;The Psychometric Society, vol. 58(1), pages 7-35, March.
    9. Akinori Okada & Tadashi Imaizumi, 1997. "Asymmetric multidimensional scaling of two-mode three-way proximities," Journal of Classification, Springer;The Classification Society, vol. 14(2), pages 195-224, September.
    10. Mariela González-Narváez & María José Fernández-Gómez & Susana Mendes & José-Luis Molina & Omar Ruiz-Barzola & Purificación Galindo-Villardón, 2021. "Study of Temporal Variations in Species–Environment Association through an Innovative Multivariate Method: MixSTATICO," Sustainability, MDPI, vol. 13(11), pages 1-25, May.
    11. Zhang, XiaoLi & Liu, ChenGuang & Li, WenJuan & Evans, Steve & Yin, Yong, 2017. "Effects of key enabling technologies for seru production on sustainable performance," Omega, Elsevier, vol. 66(PB), pages 290-307.
    12. S. Hess & E. Suárez & J. Camacho & G. Ramírez & B. Hernández, 2001. "Reliability of Coordinates Obtained by MINISSA Concerning the Order of Presented Stimuli," Quality & Quantity: International Journal of Methodology, Springer, vol. 35(2), pages 117-128, May.
    13. Milton Bloombaum, 1970. "Doing smallest space analysis," Journal of Conflict Resolution, Peace Science Society (International), vol. 14(3), pages 409-416, September.
    14. Wedel, M. & Bijmolt, T.H.A., 1998. "Mixed Tree and Spatial Representation of Dissimilarity Judgments," Discussion Paper 1998-109, Tilburg University, Center for Economic Research.
    15. Samuel Shye, 2010. "The Motivation to Volunteer: A Systemic Quality of Life Theory," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 98(2), pages 183-200, September.
    16. מחקר - ביטוח לאומי, 1994. "Volume 3," Working Papers 60, National Insurance Institute of Israel.
    17. Henk Kiers, 1991. "Hierarchical relations among three-way methods," Psychometrika, Springer;The Psychometric Society, vol. 56(3), pages 449-470, September.
    18. Willem Kloot & Pieter Kroonenberg, 1985. "External analysis with three-mode principal component models," Psychometrika, Springer;The Psychometric Society, vol. 50(4), pages 479-494, December.
    19. Patrick Groenen & Rudolf Mathar & Willem Heiser, 1995. "The majorization approach to multidimensional scaling for Minkowski distances," Journal of Classification, Springer;The Classification Society, vol. 12(1), pages 3-19, March.
    20. Pietro Amenta & Antonio Lucadamo & Antonello D’Ambra, 2021. "Restricted Common Component and Specific Weight Analysis: A Constrained Explorative Approach for the Customer Satisfaction Evaluation," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 156(2), pages 409-427, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:psycho:v:40:y:1975:i:3:p:337-360. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.