IDEAS home Printed from https://ideas.repec.org/a/spr/pharme/v39y2021i4d10.1007_s40273-021-01001-0.html
   My bibliography  Save this article

Macrovascular Risk Equations Based on the CANVAS Program

Author

Listed:
  • Michael Willis

    (Swedish Institute for Health Economics)

  • Christian Asseburg

    (ESiOR Oy)

  • April Slee

    (Axio Research, LLC)

  • Andreas Nilsson

    (Swedish Institute for Health Economics)

  • Cheryl Neslusan

    (Janssen Scientific Affairs, LLC)

Abstract

Background Widely used risk equations for cardiovascular outcomes for individuals with type 2 diabetes mellitus (T2DM) have been incapable of predicting cardioprotective effects observed in recent cardiovascular outcomes trials (CVOTs) involving individuals with T2DM at high risk for or with established cardiovascular disease (CVD). Objective We developed cardiovascular and mortality risk equations using patient-level data from the CANVAS (CANagliflozin cardioVascular Assessment Study) Program to address this shortcoming. Methods Data from 10,142 patients with T2DM at high risk for or with established CVD, randomized to canagliflozin + standard of care (SoC) or SoC alone and followed for a mean duration of 3.6 years in the CANVAS Program were used to derive parametric risk equations for myocardial infarction (MI), stroke, hospitalization for heart failure (HHF), and death. Accumulated knowledge from the widely used UKPDS-OM2 (United Kingdom Prospective Diabetes Study Outcomes Model 2) was leveraged, and any departures in parameterization were limited to those necessary to provide adequate goodness of fit. Candidate explanatory covariates were selected using only the placebo arm to minimize confounding effects. Internal validation was performed separately by study treatment arm. Results UKPDS-OM2 predicted CANVAS Program outcomes poorly. Recalibrating UKPDS-OM2 intercepts improved calibration in some cases. Refitting the coefficients but otherwise preserving the UKPDS-OM2 structure improved the fit substantially, which was sufficient for stroke and death. For MI, reselecting UKPDS-OM2 covariates and functional form proved sufficient. For HHF, selection from a broad set of candidate covariates and inclusion of a canagliflozin indicator was required. Conclusion These risk equations address some of the limitations of widely used risk equations, such as the UKPDS-OM2, for modeling cardioprotective treatments for individuals with T2DM and high cardiovascular risk, including derivation from overly healthy patients treated with agents that lack cardioprotection and have been described as reflecting a different therapeutic era. Future work is needed to examine external validity.

Suggested Citation

  • Michael Willis & Christian Asseburg & April Slee & Andreas Nilsson & Cheryl Neslusan, 2021. "Macrovascular Risk Equations Based on the CANVAS Program," PharmacoEconomics, Springer, vol. 39(4), pages 447-461, April.
  • Handle: RePEc:spr:pharme:v:39:y:2021:i:4:d:10.1007_s40273-021-01001-0
    DOI: 10.1007/s40273-021-01001-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s40273-021-01001-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s40273-021-01001-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Briggs, Andrew & Sculpher, Mark & Claxton, Karl, 2006. "Decision Modelling for Health Economic Evaluation," OUP Catalogue, Oxford University Press, number 9780198526629.
    2. Michael Willis & Pierre Johansen & Andreas Nilsson & Christian Asseburg, 2017. "Validation of the Economic and Health Outcomes Model of Type 2 Diabetes Mellitus (ECHO-T2DM)," PharmacoEconomics, Springer, vol. 35(3), pages 375-396, March.
    3. P. McEwan & H. Bennett & T. Ward & K. Bergenheim, 2015. "Refitting of the UKPDS 68 Risk Equations to Contemporary Routine Clinical Practice Data in the UK," PharmacoEconomics, Springer, vol. 33(2), pages 149-161, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Blog mentions

    As found by EconAcademics.org, the blog aggregator for Economics research:
    1. Journal round-up: PharmacoEconomics 39(4)
      by Chris Sampson in The Academic Health Economists' Blog on 2021-06-15 06:00:05

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chiranjeev Sanyal & Don Husereau, 2020. "Systematic Review of Economic Evaluations of Services Provided by Community Pharmacists," Applied Health Economics and Health Policy, Springer, vol. 18(3), pages 375-392, June.
    2. Mark Oppe & Daniela Ortín-Sulbarán & Carlos Vila Silván & Anabel Estévez-Carrillo & Juan M. Ramos-Goñi, 2021. "Cost-effectiveness of adding Sativex® spray to spasticity care in Belgium: using bootstrapping instead of Monte Carlo simulation for probabilistic sensitivity analyses," The European Journal of Health Economics, Springer;Deutsche Gesellschaft für Gesundheitsökonomie (DGGÖ), vol. 22(5), pages 711-721, July.
    3. Kaitlyn Hastings & Clara Marquina & Jedidiah Morton & Dina Abushanab & Danielle Berkovic & Stella Talic & Ella Zomer & Danny Liew & Zanfina Ademi, 2022. "Projected New-Onset Cardiovascular Disease by Socioeconomic Group in Australia," PharmacoEconomics, Springer, vol. 40(4), pages 449-460, April.
    4. Andrea Marcellusi & Raffaella Viti & Loreta A. Kondili & Stefano Rosato & Stefano Vella & Francesco Saverio Mennini, 2019. "Economic Consequences of Investing in Anti-HCV Antiviral Treatment from the Italian NHS Perspective: A Real-World-Based Analysis of PITER Data," PharmacoEconomics, Springer, vol. 37(2), pages 255-266, February.
    5. Risha Gidwani & Louise B. Russell, 2020. "Estimating Transition Probabilities from Published Evidence: A Tutorial for Decision Modelers," PharmacoEconomics, Springer, vol. 38(11), pages 1153-1164, November.
    6. Joseph F. Levy & Marjorie A. Rosenberg, 2019. "A Latent Class Approach to Modeling Trajectories of Health Care Cost in Pediatric Cystic Fibrosis," Medical Decision Making, , vol. 39(5), pages 593-604, July.
    7. Qi Cao & Erik Buskens & Hans L. Hillege & Tiny Jaarsma & Maarten Postma & Douwe Postmus, 2019. "Stratified treatment recommendation or one-size-fits-all? A health economic insight based on graphical exploration," The European Journal of Health Economics, Springer;Deutsche Gesellschaft für Gesundheitsökonomie (DGGÖ), vol. 20(3), pages 475-482, April.
    8. Jorge Luis García & James J. Heckman, 2021. "Early childhood education and life‐cycle health," Health Economics, John Wiley & Sons, Ltd., vol. 30(S1), pages 119-141, November.
    9. Tushar Srivastava & Nicholas R. Latimer & Paul Tappenden, 2021. "Estimation of Transition Probabilities for State-Transition Models: A Review of NICE Appraisals," PharmacoEconomics, Springer, vol. 39(8), pages 869-878, August.
    10. Eleanor Heather & Katherine Payne & Mark Harrison & Deborah Symmons, 2014. "Including Adverse Drug Events in Economic Evaluations of Anti-Tumour Necrosis Factor-α Drugs for Adult Rheumatoid Arthritis: A Systematic Review of Economic Decision Analytic Models," PharmacoEconomics, Springer, vol. 32(2), pages 109-134, February.
    11. Manuel Gomes & Robert Aldridge & Peter Wylie & James Bell & Owen Epstein, 2013. "Cost-Effectiveness Analysis of 3-D Computerized Tomography Colonography Versus Optical Colonoscopy for Imaging Symptomatic Gastroenterology Patients," Applied Health Economics and Health Policy, Springer, vol. 11(2), pages 107-117, April.
    12. Isaac Corro Ramos & Maureen P. M. H. Rutten-van Mölken & Maiwenn J. Al, 2013. "The Role of Value-of-Information Analysis in a Health Care Research Priority Setting," Medical Decision Making, , vol. 33(4), pages 472-489, May.
    13. Wei Fang & Zhenru Wang & Michael B. Giles & Chris H. Jackson & Nicky J. Welton & Christophe Andrieu & Howard Thom, 2022. "Multilevel and Quasi Monte Carlo Methods for the Calculation of the Expected Value of Partial Perfect Information," Medical Decision Making, , vol. 42(2), pages 168-181, February.
    14. Martin Hoyle, 2008. "Future Drug Prices and Cost-Effectiveness Analyses," PharmacoEconomics, Springer, vol. 26(7), pages 589-602, July.
    15. Bauer, Annette & Knapp, Martin & Alvi, Mohsin & Chaudhry, Nasim & Gregoire, Alain & Malik, Abid & Sikander, Siham & Tayyaba, Kiran & Wagas, Ahmed & Husain, Nusrat, 2024. "Economic costs of perinatal depression and anxiety in a lower-middle income country: Pakistan," LSE Research Online Documents on Economics 122650, London School of Economics and Political Science, LSE Library.
    16. Aris Angelis & Huseyin Naci & Allan Hackshaw, 2020. "Recalibrating Health Technology Assessment Methods for Cell and Gene Therapies," PharmacoEconomics, Springer, vol. 38(12), pages 1297-1308, December.
    17. Yasuhiro Hagiwara & Takeru Shiroiwa, 2022. "Estimating Value-Based Price and Quantifying Uncertainty around It in Health Technology Assessment: Frequentist and Bayesian Approaches," Medical Decision Making, , vol. 42(5), pages 672-683, July.
    18. Neily Zakiyah & Antoinette D I van Asselt & Frank Roijmans & Maarten J Postma, 2016. "Economic Evaluation of Family Planning Interventions in Low and Middle Income Countries; A Systematic Review," PLOS ONE, Public Library of Science, vol. 11(12), pages 1-19, December.
    19. Billingsley Kaambwa & Julie Ratcliffe, 2018. "Predicting EuroQoL 5 Dimensions 5 Levels (EQ-5D-5L) Utilities from Older People’s Quality of Life Brief Questionnaire (OPQoL-Brief) Scores," The Patient: Patient-Centered Outcomes Research, Springer;International Academy of Health Preference Research, vol. 11(1), pages 39-54, February.
    20. Billingsley Kaambwa & Gang Chen & Julie Ratcliffe & Angelo Iezzi & Aimee Maxwell & Jeff Richardson, 2017. "Mapping Between the Sydney Asthma Quality of Life Questionnaire (AQLQ-S) and Five Multi-Attribute Utility Instruments (MAUIs)," PharmacoEconomics, Springer, vol. 35(1), pages 111-124, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:pharme:v:39:y:2021:i:4:d:10.1007_s40273-021-01001-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.