IDEAS home Printed from https://ideas.repec.org/a/spr/pharme/v37y2019i11d10.1007_s40273-019-00837-x.html
   My bibliography  Save this article

A Need for Change! A Coding Framework for Improving Transparency in Decision Modeling

Author

Listed:
  • Fernando Alarid-Escudero

    (Center for Research and Teaching in Economics (CIDE)-CONACyT)

  • Eline M. Krijkamp

    (Erasmus MC)

  • Petros Pechlivanoglou

    (The Hospital for Sick Children and University of Toronto)

  • Hawre Jalal

    (University of Pittsburgh)

  • Szu-Yu Zoe Kao

    (University of Minnesota School of Public Health)

  • Alan Yang

    (The Hospital for Sick Children)

  • Eva A. Enns

    (University of Minnesota School of Public Health)

Abstract

The use of open-source programming languages, such as R, in health decision sciences is growing and has the potential to facilitate model transparency, reproducibility, and shareability. However, realizing this potential can be challenging. Models are complex and primarily built to answer a research question, with model sharing and transparency relegated to being secondary goals. Consequently, code is often neither well documented nor systematically organized in a comprehensible and shareable approach. Moreover, many decision modelers are not formally trained in computer programming and may lack good coding practices, further compounding the problem of model transparency. To address these challenges, we propose a high-level framework for model-based decision and cost-effectiveness analyses (CEA) in R. The proposed framework consists of a conceptual, modular structure and coding recommendations for the implementation of model-based decision analyses in R. This framework defines a set of common decision model elements divided into five components: (1) model inputs, (2) decision model implementation, (3) model calibration, (4) model validation, and (5) analysis. The first four components form the model development phase. The analysis component is the application of the fully developed decision model to answer the policy or the research question of interest, assess decision uncertainty, and/or to determine the value of future research through value of information (VOI) analysis. In this framework, we also make recommendations for good coding practices specific to decision modeling, such as file organization and variable naming conventions. We showcase the framework through a fully functional, testbed decision model, which is hosted on GitHub for free download and easy adaptation to other applications. The use of this framework in decision modeling will improve code readability and model sharing, paving the way to an ideal, open-source world.

Suggested Citation

  • Fernando Alarid-Escudero & Eline M. Krijkamp & Petros Pechlivanoglou & Hawre Jalal & Szu-Yu Zoe Kao & Alan Yang & Eva A. Enns, 2019. "A Need for Change! A Coding Framework for Improving Transparency in Decision Modeling," PharmacoEconomics, Springer, vol. 37(11), pages 1329-1339, November.
  • Handle: RePEc:spr:pharme:v:37:y:2019:i:11:d:10.1007_s40273-019-00837-x
    DOI: 10.1007/s40273-019-00837-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s40273-019-00837-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s40273-019-00837-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kleijnen, Jack P. C., 1995. "Verification and validation of simulation models," European Journal of Operational Research, Elsevier, vol. 82(1), pages 145-162, April.
    2. Karl Claxton & John Posnett, "undated". "An Economic Approach to Clinical Trial Design and Research Priority Setting," Discussion Papers 96/19, Department of Economics, University of York.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Carmen María Yago & Francisco Javier Díez, 2023. "DESnets: A Graphical Representation for Discrete Event Simulation and Cost-Effectiveness Analysis," Mathematics, MDPI, vol. 11(7), pages 1-24, March.
    2. Paul Tappenden & J. Jaime Caro, 2019. "Improving Transparency in Decision Models: Current Issues and Potential Solutions," PharmacoEconomics, Springer, vol. 37(11), pages 1303-1304, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Peter Bacchetti & Charles E. McCulloch & Mark R. Segal, 2008. "Simple, Defensible Sample Sizes Based on Cost Efficiency," Biometrics, The International Biometric Society, vol. 64(2), pages 577-585, June.
    2. Rachael DiSantostefano & Andrea Biddle & John Lavelle, 2006. "The Long-Term Cost Effectiveness of Treatments for Benign Prostatic Hyperplasia," PharmacoEconomics, Springer, vol. 24(2), pages 171-191, February.
    3. Qi Cao & Erik Buskens & Hans L. Hillege & Tiny Jaarsma & Maarten Postma & Douwe Postmus, 2019. "Stratified treatment recommendation or one-size-fits-all? A health economic insight based on graphical exploration," The European Journal of Health Economics, Springer;Deutsche Gesellschaft für Gesundheitsökonomie (DGGÖ), vol. 20(3), pages 475-482, April.
    4. Simon Eckermann & Tim Coelli, 2008. "Including quality attributes in a model of health care efficiency: A net benefit approach," CEPA Working Papers Series WP032008, School of Economics, University of Queensland, Australia.
    5. Neil Hawkins & Mark Sculpher & David Epstein, 2005. "Cost-Effectiveness Analysis of Treatments for Chronic Disease: Using R to Incorporate Time Dependency of Treatment Response," Medical Decision Making, , vol. 25(5), pages 511-519, September.
    6. H. Christopher Frey & Sumeet R. Patil, 2002. "Identification and Review of Sensitivity Analysis Methods," Risk Analysis, John Wiley & Sons, vol. 22(3), pages 553-578, June.
    7. Edris Yousefi Rad & Mohammad Reza Mahpeykar, 2017. "A Novel Hybrid Approach for Numerical Modeling of the Nucleating Flow in Laval Nozzle and Transonic Steam Turbine Blades," Energies, MDPI, vol. 10(9), pages 1-37, August.
    8. Tunali, S. & Batmaz, I., 2003. "A metamodeling methodology involving both qualitative and quantitative input factors," European Journal of Operational Research, Elsevier, vol. 150(2), pages 437-450, October.
    9. Diaz, Rafael & Behr, Joshua G. & Acero, Beatriz, 2022. "Coastal housing recovery in a postdisaster environment: A supply chain perspective," International Journal of Production Economics, Elsevier, vol. 247(C).
    10. Kleijnen, J.P.C., 1995. "Sensitivity analysis and optimization of system dynamics models : Regression analysis and statistical design of experiments," Other publications TiSEM 87ee6ee0-592c-4204-ac50-6, Tilburg University, School of Economics and Management.
    11. John Hutton, 2012. "‘Health Economics’ and the evolution of economic evaluation of health technologies," Health Economics, John Wiley & Sons, Ltd., vol. 21(1), pages 13-18, January.
    12. Sander van der Hoog, 2017. "Deep Learning in (and of) Agent-Based Models: A Prospectus," Papers 1706.06302, arXiv.org.
    13. Aumann, Craig A., 2007. "A methodology for developing simulation models of complex systems," Ecological Modelling, Elsevier, vol. 202(3), pages 385-396.
    14. Rachael L. Fleurence, 2007. "Setting priorities for research: a practical application of 'payback' and expected value of information," Health Economics, John Wiley & Sons, Ltd., vol. 16(12), pages 1345-1357.
    15. Sofia Dias & Alex J. Sutton & Nicky J. Welton & A. E. Ades, 2013. "Evidence Synthesis for Decision Making 6," Medical Decision Making, , vol. 33(5), pages 671-678, July.
    16. Giuliano Rancilio & Alexandre Lucas & Evangelos Kotsakis & Gianluca Fulli & Marco Merlo & Maurizio Delfanti & Marcelo Masera, 2019. "Modeling a Large-Scale Battery Energy Storage System for Power Grid Application Analysis," Energies, MDPI, vol. 12(17), pages 1-26, August.
    17. Samer A. Kharroubi & Alan Brennan & Mark Strong, 2011. "Estimating Expected Value of Sample Information for Incomplete Data Models Using Bayesian Approximation," Medical Decision Making, , vol. 31(6), pages 839-852, November.
    18. Nicola J. Cooper & Keith R. Abrams & Alex J. Sutton & David Turner & Paul C. Lambert, 2003. "A Bayesian approach to Markov modelling in cost‐effectiveness analyses: application to taxane use in advanced breast cancer," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 166(3), pages 389-405, October.
    19. Eric Jutkowitz & Fernando Alarid-Escudero & Hyon K. Choi & Karen M. Kuntz & Hawre Jalal, 2017. "Prioritizing Future Research on Allopurinol and Febuxostat for the Management of Gout: Value of Information Analysis," PharmacoEconomics, Springer, vol. 35(10), pages 1073-1085, October.
    20. MacPherson, Brian & Gras, Robin, 2016. "Individual-based ecological models: Adjunctive tools or experimental systems?," Ecological Modelling, Elsevier, vol. 323(C), pages 106-114.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:pharme:v:37:y:2019:i:11:d:10.1007_s40273-019-00837-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.