IDEAS home Printed from https://ideas.repec.org/a/spr/pharme/v35y2017i10d10.1007_s40273-017-0526-0.html
   My bibliography  Save this article

Prioritizing Future Research on Allopurinol and Febuxostat for the Management of Gout: Value of Information Analysis

Author

Listed:
  • Eric Jutkowitz

    (Brown University School of Public Health)

  • Fernando Alarid-Escudero

    (University of Minnesota)

  • Hyon K. Choi

    (Massachusetts General Hospital)

  • Karen M. Kuntz

    (University of Minnesota)

  • Hawre Jalal

    (University of Pittsburgh)

Abstract

Objectives The aim of this study was to quantify the value of conducting additional research and reducing uncertainty regarding the cost effectiveness of allopurinol and febuxostat for the management of gout. Methods We used a previously developed Markov model that evaluated the cost effectiveness of nine urate-lowering strategies: no treatment, allopurinol-only fixed dose (300 mg), allopurinol-only dose escalation (up to 800 mg), febuxostat-only fixed dose (80 mg), febuxostat-only dose escalation (up to 120 mg), allopurinol–febuxostat sequential therapy fixed dose, allopurinol–febuxostat sequential therapy dose escalation, febuxostat–allopurinol sequential therapy fixed dose, and febuxostat–allopurinol sequential therapy dose escalation. Each strategy was evaluated over the lifetime of a hypothetical gout patient. We calculated population expected value of perfect information (EVPI). We used a linear regression meta-modeling approach to calculate population expected value of partial perfect information (EVPPI), and a Gaussian approximation to calculate the population expected value of sample information for parameters (EVSI) and the expected net benefit of sampling (ENBS) for four potential study designs: (1) an allopurinol efficacy trial; (2) a febuxostat efficacy trial; (3) a prospective observational study evaluating health utilities; and (4) a comprehensive study evaluating the efficacy of allopurinol and febuxostat and health utilities. A 5-year decision time horizon was used in the base-case analysis. Results EVPI varied by a decision maker’s willingness-to-pay (WTP) per quality-adjusted life-year (QALY) and was $US900 million for WTP of $US60,000 per QALY. Population EVPPI was highest across all WTP values for study design #4. For study design #4 and a WTP of $US60,000 per QALY, the optimal sample size was 735 patients per study arm. Conclusions Future studies are needed to evaluate the effectiveness of allopurinol and febuxostat dose escalation.

Suggested Citation

  • Eric Jutkowitz & Fernando Alarid-Escudero & Hyon K. Choi & Karen M. Kuntz & Hawre Jalal, 2017. "Prioritizing Future Research on Allopurinol and Febuxostat for the Management of Gout: Value of Information Analysis," PharmacoEconomics, Springer, vol. 35(10), pages 1073-1085, October.
  • Handle: RePEc:spr:pharme:v:35:y:2017:i:10:d:10.1007_s40273-017-0526-0
    DOI: 10.1007/s40273-017-0526-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s40273-017-0526-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s40273-017-0526-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. James C. Felli & Gordon B. Hazen, 1999. "A Bayesian approach to sensitivity analysis," Health Economics, John Wiley & Sons, Ltd., vol. 8(3), pages 263-268, May.
    2. Briggs, Andrew & Sculpher, Mark & Claxton, Karl, 2006. "Decision Modelling for Health Economic Evaluation," OUP Catalogue, Oxford University Press, number 9780198526629.
    3. Karl Claxton & John Posnett, "undated". "An Economic Approach to Clinical Trial Design and Research Priority Setting," Discussion Papers 96/19, Department of Economics, University of York.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hawre Jalal & Jeremy D. Goldhaber-Fiebert & Karen M. Kuntz, 2015. "Computing Expected Value of Partial Sample Information from Probabilistic Sensitivity Analysis Using Linear Regression Metamodeling," Medical Decision Making, , vol. 35(5), pages 584-595, July.
    2. A. E. Ades & Karl Claxton & Mark Sculpher, 2006. "Evidence synthesis, parameter correlation and probabilistic sensitivity analysis," Health Economics, John Wiley & Sons, Ltd., vol. 15(4), pages 373-381, April.
    3. Qi Cao & Erik Buskens & Hans L. Hillege & Tiny Jaarsma & Maarten Postma & Douwe Postmus, 2019. "Stratified treatment recommendation or one-size-fits-all? A health economic insight based on graphical exploration," The European Journal of Health Economics, Springer;Deutsche Gesellschaft für Gesundheitsökonomie (DGGÖ), vol. 20(3), pages 475-482, April.
    4. Doug Coyle & Jeremy Oakley, 2008. "Estimating the expected value of partial perfect information: a review of methods," The European Journal of Health Economics, Springer;Deutsche Gesellschaft für Gesundheitsökonomie (DGGÖ), vol. 9(3), pages 251-259, August.
    5. Josh J. Carlson & Rahber Thariani & Josh Roth & Julie Gralow & N. Lynn Henry & Laura Esmail & Pat Deverka & Scott D. Ramsey & Laurence Baker & David L. Veenstra, 2013. "Value-of-Information Analysis within a Stakeholder-Driven Research Prioritization Process in a US Setting: An Application in Cancer Genomics," Medical Decision Making, , vol. 33(4), pages 463-471, May.
    6. G. Ramos & Antoinette Asselt & Sandra Kuiper & Johan Severens & Tanja Maas & Edward Dompeling & J. Knottnerus & Onno Schayck, 2014. "Cost-effectiveness of primary prevention of paediatric asthma: a decision-analytic model," The European Journal of Health Economics, Springer;Deutsche Gesellschaft für Gesundheitsökonomie (DGGÖ), vol. 15(8), pages 869-883, November.
    7. Jennifer Uyei & R. Scott Braithwaite, 2016. "Are There Scenarios When the Use of Non–Placebo-Control Groups in Experimental Trial Designs Increase Expected Value to Society?," Medical Decision Making, , vol. 36(1), pages 20-30, January.
    8. Manuel A. Espinoza & Andrea Manca & Karl Claxton & Mark J. Sculpher, 2014. "The Value of Heterogeneity for Cost-Effectiveness Subgroup Analysis," Medical Decision Making, , vol. 34(8), pages 951-964, November.
    9. David Glynn & Georgios Nikolaidis & Dina Jankovic & Nicky J. Welton, 2023. "Constructing Relative Effect Priors for Research Prioritization and Trial Design: A Meta-epidemiological Analysis," Medical Decision Making, , vol. 43(5), pages 553-563, July.
    10. Anna Heath & Ioanna Manolopoulou & Gianluca Baio, 2017. "A Review of Methods for Analysis of the Expected Value of Information," Medical Decision Making, , vol. 37(7), pages 747-758, October.
    11. Mathyn Vervaart & Mark Strong & Karl P. Claxton & Nicky J. Welton & Torbjørn Wisløff & Eline Aas, 2022. "An Efficient Method for Computing Expected Value of Sample Information for Survival Data from an Ongoing Trial," Medical Decision Making, , vol. 42(5), pages 612-625, July.
    12. A. E. Ades & A. J. Sutton, 2006. "Multiparameter evidence synthesis in epidemiology and medical decision‐making: current approaches," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 169(1), pages 5-35, January.
    13. Lazaros Andronis & Lucinda J. Billingham & Stirling Bryan & Nicholas D. James & Pelham M. Barton, 2016. "A Practical Application of Value of Information and Prospective Payback of Research to Prioritize Evaluative Research," Medical Decision Making, , vol. 36(3), pages 321-334, April.
    14. A C Bouman & A J ten Cate-Hoek & B L T Ramaekers & M A Joore, 2015. "Sample Size Estimation for Non-Inferiority Trials: Frequentist Approach versus Decision Theory Approach," PLOS ONE, Public Library of Science, vol. 10(6), pages 1-14, June.
    15. Anna Heath & Ioanna Manolopoulou & Gianluca Baio, 2018. "Efficient Monte Carlo Estimation of the Expected Value of Sample Information Using Moment Matching," Medical Decision Making, , vol. 38(2), pages 163-173, February.
    16. Karnon, Jonathan, 2002. "Planning the efficient allocation of research funds: an adapted application of a non-parametric Bayesian value of information analysis," Health Policy, Elsevier, vol. 61(3), pages 329-347, September.
    17. Joanna Thorn & Joanna Coast & Lazaros Andronis, 2016. "Interpretation of the Expected Value of Perfect Information and Research Recommendations," Medical Decision Making, , vol. 36(3), pages 285-295, April.
    18. Elizabeth Fenwick & Karl Claxton & Mark Sculpher & Andrew Briggs, 2000. "Improving the efficiency and relevance of health technology assessent: the role of iterative decision analytic modelling," Working Papers 179chedp, Centre for Health Economics, University of York.
    19. Eric Jutkowitz & Fernando Alarid-Escudero & Karen M. Kuntz & Hawre Jalal, 2019. "The Curve of Optimal Sample Size (COSS): A Graphical Representation of the Optimal Sample Size from a Value of Information Analysis," PharmacoEconomics, Springer, vol. 37(7), pages 871-877, July.
    20. Chiranjeev Sanyal & Don Husereau, 2020. "Systematic Review of Economic Evaluations of Services Provided by Community Pharmacists," Applied Health Economics and Health Policy, Springer, vol. 18(3), pages 375-392, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:pharme:v:35:y:2017:i:10:d:10.1007_s40273-017-0526-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.