IDEAS home Printed from https://ideas.repec.org/a/spr/pharme/v28y2010i1p61-74.html
   My bibliography  Save this article

A Policy Model to Evaluate the Benefits, Risks and Costs of Warfarin Pharmacogenomic Testing

Author

Listed:
  • Lisa Meckley
  • James Gudgeon
  • Jeffrey Anderson
  • Marc Williams
  • David Veenstra

Abstract

Background: In 2007, the US FDA added information about pharmacogenomics to the warfarin label based on the influence of the CYP2C9 and VKORC1 genes on anticoagulation-related outcomes. Payers will be facing increasing demand for coverage decisions regarding this technology, but the potential clinical and economic impacts of testing are not clear. Objective: To develop a policy model to evaluate the potential outcomes of warfarin pharmacogenomic testing based on the most recently available data. Methods: A decision-analytic Markov model was developed to assess the addition of genetic testing to anticoagulation clinic standard care for a hypothetical cohort of warfarin patients. The model was based on anticoagulation status (international normalized ratio), a common outcome measure in clinical trials that captures both the benefits and risks of warfarin therapy. Initial estimates of testing effects were derived from a recently completed randomized controlled trial (n=200). Healthcare cost ($US, year 2007 values) and health-state utility data were obtained from the literature. The perspective was that of a US third-party payer. Probabilistic and one-way sensitivity analyses were performed to explore the range of plausible results. Results: The policy model included thromboembolic events (TEs) and bleeding events and was populated by data from the COUMAGEN trial. The rate of bleeding calculated for standard care approximated bleeding rates found in an independent cohort of warfarin patients. According to our model, pharmacogenomic testing provided an absolute reduction in the incidence of bleeds of 0.17%, but an absolute increase in the incidence of TEs of 0.03%. The improvement in QALYs was small, 0.003, with an increase in total cost of $US162 (year 2007 values). The incremental cost-effectiveness ratio (ICER) ranged from testing dominating to standard care dominating, and the ICER was >$US50 000 per QALY in 46% of simulations. Results were most sensitive to the cost of genotyping and the effect of genotyping. Conclusion: Our model, based on initial clinical studies to date, suggests that warfarin pharmacogenomic testing may provide a small clinical benefit with significant uncertainty in economic value. Given the uncertainty in the analysis, further updates will be important as additional clinical data become available. Copyright Adis Data Information BV 2010

Suggested Citation

  • Lisa Meckley & James Gudgeon & Jeffrey Anderson & Marc Williams & David Veenstra, 2010. "A Policy Model to Evaluate the Benefits, Risks and Costs of Warfarin Pharmacogenomic Testing," PharmacoEconomics, Springer, vol. 28(1), pages 61-74, January.
  • Handle: RePEc:spr:pharme:v:28:y:2010:i:1:p:61-74
    DOI: 10.2165/11318240-000000000-00000
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.2165/11318240-000000000-00000
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.2165/11318240-000000000-00000?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Patrick W. Sullivan & Vahram Ghushchyan, 2006. "Preference-Based EQ-5D Index Scores for Chronic Conditions in the United States," Medical Decision Making, , vol. 26(4), pages 410-420, July.
    2. Briggs, Andrew & Sculpher, Mark & Claxton, Karl, 2006. "Decision Modelling for Health Economic Evaluation," OUP Catalogue, Oxford University Press, number 9780198526629.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Elizabeth J J Berm & Margot de Looff & Bob Wilffert & Cornelis Boersma & Lieven Annemans & Stefan Vegter & Job F M van Boven & Maarten J Postma, 2016. "Economic Evaluations of Pharmacogenetic and Pharmacogenomic Screening Tests: A Systematic Review. Second Update of the Literature," PLOS ONE, Public Library of Science, vol. 11(1), pages 1-22, January.
    2. Olga Špačková & Daniel Straub, 2015. "Cost‐Benefit Analysis for Optimization of Risk Protection Under Budget Constraints," Risk Analysis, John Wiley & Sons, vol. 35(5), pages 941-959, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hardik Goswami & Adnan Alsumali & Yiling Jiang & Matthias Schindler & Elizabeth R. Duke & Joshua Cohen & Andrew Briggs & Amy Puenpatom, 2022. "Cost-Effectiveness Analysis of Molnupiravir Versus Best Supportive Care for the Treatment of Outpatient COVID-19 in Adults in the US," PharmacoEconomics, Springer, vol. 40(7), pages 699-714, July.
    2. Deirdre B. Blissett & Joerg S. Steier & Yakubu G. Karagama & Rob S. Blissett, 2021. "Breathing Synchronised Hypoglossal Nerve Stimulation with Inspire for Untreated Severe Obstructive Sleep Apnoea/Hypopnoea Syndrome: A Simulated Cost-Utility Analysis from a National Health Service Per," PharmacoEconomics - Open, Springer, vol. 5(3), pages 475-489, September.
    3. Chiranjeev Sanyal & Don Husereau, 2020. "Systematic Review of Economic Evaluations of Services Provided by Community Pharmacists," Applied Health Economics and Health Policy, Springer, vol. 18(3), pages 375-392, June.
    4. Mark Oppe & Daniela Ortín-Sulbarán & Carlos Vila Silván & Anabel Estévez-Carrillo & Juan M. Ramos-Goñi, 2021. "Cost-effectiveness of adding Sativex® spray to spasticity care in Belgium: using bootstrapping instead of Monte Carlo simulation for probabilistic sensitivity analyses," The European Journal of Health Economics, Springer;Deutsche Gesellschaft für Gesundheitsökonomie (DGGÖ), vol. 22(5), pages 711-721, July.
    5. Kaitlyn Hastings & Clara Marquina & Jedidiah Morton & Dina Abushanab & Danielle Berkovic & Stella Talic & Ella Zomer & Danny Liew & Zanfina Ademi, 2022. "Projected New-Onset Cardiovascular Disease by Socioeconomic Group in Australia," PharmacoEconomics, Springer, vol. 40(4), pages 449-460, April.
    6. Andrea Marcellusi & Raffaella Viti & Loreta A. Kondili & Stefano Rosato & Stefano Vella & Francesco Saverio Mennini, 2019. "Economic Consequences of Investing in Anti-HCV Antiviral Treatment from the Italian NHS Perspective: A Real-World-Based Analysis of PITER Data," PharmacoEconomics, Springer, vol. 37(2), pages 255-266, February.
    7. Risha Gidwani & Louise B. Russell, 2020. "Estimating Transition Probabilities from Published Evidence: A Tutorial for Decision Modelers," PharmacoEconomics, Springer, vol. 38(11), pages 1153-1164, November.
    8. Joseph F. Levy & Marjorie A. Rosenberg, 2019. "A Latent Class Approach to Modeling Trajectories of Health Care Cost in Pediatric Cystic Fibrosis," Medical Decision Making, , vol. 39(5), pages 593-604, July.
    9. Qi Cao & Erik Buskens & Hans L. Hillege & Tiny Jaarsma & Maarten Postma & Douwe Postmus, 2019. "Stratified treatment recommendation or one-size-fits-all? A health economic insight based on graphical exploration," The European Journal of Health Economics, Springer;Deutsche Gesellschaft für Gesundheitsökonomie (DGGÖ), vol. 20(3), pages 475-482, April.
    10. Jorge Luis García & James J. Heckman, 2021. "Early childhood education and life‐cycle health," Health Economics, John Wiley & Sons, Ltd., vol. 30(S1), pages 119-141, November.
    11. Tushar Srivastava & Nicholas R. Latimer & Paul Tappenden, 2021. "Estimation of Transition Probabilities for State-Transition Models: A Review of NICE Appraisals," PharmacoEconomics, Springer, vol. 39(8), pages 869-878, August.
    12. Eleanor Heather & Katherine Payne & Mark Harrison & Deborah Symmons, 2014. "Including Adverse Drug Events in Economic Evaluations of Anti-Tumour Necrosis Factor-α Drugs for Adult Rheumatoid Arthritis: A Systematic Review of Economic Decision Analytic Models," PharmacoEconomics, Springer, vol. 32(2), pages 109-134, February.
    13. Manuel Gomes & Robert Aldridge & Peter Wylie & James Bell & Owen Epstein, 2013. "Cost-Effectiveness Analysis of 3-D Computerized Tomography Colonography Versus Optical Colonoscopy for Imaging Symptomatic Gastroenterology Patients," Applied Health Economics and Health Policy, Springer, vol. 11(2), pages 107-117, April.
    14. Isaac Corro Ramos & Maureen P. M. H. Rutten-van Mölken & Maiwenn J. Al, 2013. "The Role of Value-of-Information Analysis in a Health Care Research Priority Setting," Medical Decision Making, , vol. 33(4), pages 472-489, May.
    15. Knott, R. & Lorgelly, P. & Black, N. & Hollingsworth, B., 2016. "Differential item functioning in the EQ-5D: An exploratory analysis using anchoring vignettes," Health, Econometrics and Data Group (HEDG) Working Papers 16/14, HEDG, c/o Department of Economics, University of York.
    16. Wei Fang & Zhenru Wang & Michael B. Giles & Chris H. Jackson & Nicky J. Welton & Christophe Andrieu & Howard Thom, 2022. "Multilevel and Quasi Monte Carlo Methods for the Calculation of the Expected Value of Partial Perfect Information," Medical Decision Making, , vol. 42(2), pages 168-181, February.
    17. Martin Hoyle, 2008. "Future Drug Prices and Cost-Effectiveness Analyses," PharmacoEconomics, Springer, vol. 26(7), pages 589-602, July.
    18. Bauer, Annette & Knapp, Martin & Alvi, Mohsin & Chaudhry, Nasim & Gregoire, Alain & Malik, Abid & Sikander, Siham & Tayyaba, Kiran & Wagas, Ahmed & Husain, Nusrat, 2024. "Economic costs of perinatal depression and anxiety in a lower-middle income country: Pakistan," LSE Research Online Documents on Economics 122650, London School of Economics and Political Science, LSE Library.
    19. Aris Angelis & Huseyin Naci & Allan Hackshaw, 2020. "Recalibrating Health Technology Assessment Methods for Cell and Gene Therapies," PharmacoEconomics, Springer, vol. 38(12), pages 1297-1308, December.
    20. Yasuhiro Hagiwara & Takeru Shiroiwa, 2022. "Estimating Value-Based Price and Quantifying Uncertainty around It in Health Technology Assessment: Frequentist and Bayesian Approaches," Medical Decision Making, , vol. 42(5), pages 672-683, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:pharme:v:28:y:2010:i:1:p:61-74. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.