IDEAS home Printed from https://ideas.repec.org/a/spr/orspec/v41y2019i4d10.1007_s00291-019-00567-8.html
   My bibliography  Save this article

A machine learning approach for flow shop scheduling problems with alternative resources, sequence-dependent setup times, and blocking

Author

Listed:
  • Frank Benda

    (University of Vienna
    University of Vienna)

  • Roland Braune

    (University of Vienna)

  • Karl F. Doerner

    (University of Vienna
    Research Platform Data Science @ Uni Vienna)

  • Richard F. Hartl

    (University of Vienna)

Abstract

In proposing a machine learning approach for a flow shop scheduling problem with alternative resources, sequence-dependent setup times, and blocking, this paper seeks to generate a tree-based priority rule in terms of a well-performing decision tree (DT) for dispatching jobs. Furthermore, generating a generic DT and RF that yields competitive results for instance scenarios that structurally differ from the training instances was another goal of our research. The proposed DT relies on high quality solutions, obtained using a constraint programming (CP) formulation. Novel aspects include a unified representation of job sequencing and machine assignment decisions, as well as the generation of random forests (RF) to counteract overfitting behaviour. To show the performance of the proposed approaches, different instance scenarios for two objectives (makespan and total tardiness minimisation) were implemented, based on randomised problem data. The background of this approach is a real-world physical system of an industrial partner that represents a typical shop floor for many production processes, such as furniture and window construction. The results of a comparison of the DT and RF approach with two priority dispatching rules, the original CP solutions and tight lower bounds retrieved from a strengthened mixed-integer programming (MIP) formulation show that the proposed machine learning approach performs well in most instance sets for the makespan objective and in all sets for the total tardiness objective.

Suggested Citation

  • Frank Benda & Roland Braune & Karl F. Doerner & Richard F. Hartl, 2019. "A machine learning approach for flow shop scheduling problems with alternative resources, sequence-dependent setup times, and blocking," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 41(4), pages 871-893, December.
  • Handle: RePEc:spr:orspec:v:41:y:2019:i:4:d:10.1007_s00291-019-00567-8
    DOI: 10.1007/s00291-019-00567-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00291-019-00567-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00291-019-00567-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ari P. J. Vepsalainen & Thomas E. Morton, 1987. "Priority Rules for Job Shops with Weighted Tardiness Costs," Management Science, INFORMS, vol. 33(8), pages 1035-1047, August.
    2. Nicholas G. Hall & Chelliah Sriskandarajah, 1996. "A Survey of Machine Scheduling Problems with Blocking and No-Wait in Process," Operations Research, INFORMS, vol. 44(3), pages 510-525, June.
    3. Olafsson, Sigurdur & Li, Xiaonan, 2010. "Learning effective new single machine dispatching rules from optimal scheduling data," International Journal of Production Economics, Elsevier, vol. 128(1), pages 118-126, November.
    4. S. S. Panwalkar & Wafik Iskander, 1977. "A Survey of Scheduling Rules," Operations Research, INFORMS, vol. 25(1), pages 45-61, February.
    5. Kurz, Mary E. & Askin, Ronald G., 2004. "Scheduling flexible flow lines with sequence-dependent setup times," European Journal of Operational Research, Elsevier, vol. 159(1), pages 66-82, November.
    6. Ruiz, Ruben & Maroto, Concepcion & Alcaraz, Javier, 2005. "Solving the flowshop scheduling problem with sequence dependent setup times using advanced metaheuristics," European Journal of Operational Research, Elsevier, vol. 165(1), pages 34-54, August.
    7. Mascis, Alessandro & Pacciarelli, Dario, 2002. "Job-shop scheduling with blocking and no-wait constraints," European Journal of Operational Research, Elsevier, vol. 143(3), pages 498-517, December.
    8. Egon Balas, 1969. "Machine Sequencing Via Disjunctive Graphs: An Implicit Enumeration Algorithm," Operations Research, INFORMS, vol. 17(6), pages 941-957, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Stefan Helber & Ton Kok & Heinrich Kuhn & Michael Manitz & Andrea Matta & Raik Stolletz, 2019. "Quantitative approaches in production management," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 41(4), pages 867-870, December.
    2. Braune, Roland & Benda, Frank & Doerner, Karl F. & Hartl, Richard F., 2022. "A genetic programming learning approach to generate dispatching rules for flexible shop scheduling problems," International Journal of Production Economics, Elsevier, vol. 243(C).
    3. Ivan Derpich & Juan Valencia & Mario Lopez, 2023. "The Set Covering and Other Problems: An Empiric Complexity Analysis Using the Minimum Ellipsoidal Width," Mathematics, MDPI, vol. 11(13), pages 1-22, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Corman, Francesco & D'Ariano, Andrea & Pacciarelli, Dario & Pranzo, Marco, 2010. "A tabu search algorithm for rerouting trains during rail operations," Transportation Research Part B: Methodological, Elsevier, vol. 44(1), pages 175-192, January.
    2. Alvarez-Valdes, R. & Fuertes, A. & Tamarit, J. M. & Gimenez, G. & Ramos, R., 2005. "A heuristic to schedule flexible job-shop in a glass factory," European Journal of Operational Research, Elsevier, vol. 165(2), pages 525-534, September.
    3. Schaller, Jeffrey & Valente, Jorge M.S., 2020. "Minimizing total earliness and tardiness in a nowait flow shop," International Journal of Production Economics, Elsevier, vol. 224(C).
    4. Zhen Song & Håkan Schunnesson & Mikael Rinne & John Sturgul, 2015. "Intelligent Scheduling for Underground Mobile Mining Equipment," PLOS ONE, Public Library of Science, vol. 10(6), pages 1-21, June.
    5. Seifert, Ralf W. & Morito, Susumu, 2001. "Cooperative dispatching - exploiting the flexibility of an FMS by means of incremental optimization," European Journal of Operational Research, Elsevier, vol. 129(1), pages 116-133, February.
    6. Mogali, Jayanth Krishna & Barbulescu, Laura & Smith, Stephen F., 2021. "Efficient primal heuristic updates for the blocking job shop problem," European Journal of Operational Research, Elsevier, vol. 295(1), pages 82-101.
    7. Meloni, Carlo & Pranzo, Marco & Samà, Marcella, 2022. "Evaluation of VaR and CVaR for the makespan in interval valued blocking job shops," International Journal of Production Economics, Elsevier, vol. 247(C).
    8. Andrea D'Ariano & Francesco Corman & Dario Pacciarelli & Marco Pranzo, 2008. "Reordering and Local Rerouting Strategies to Manage Train Traffic in Real Time," Transportation Science, INFORMS, vol. 42(4), pages 405-419, November.
    9. Bierwirth, C. & Kuhpfahl, J., 2017. "Extended GRASP for the job shop scheduling problem with total weighted tardiness objective," European Journal of Operational Research, Elsevier, vol. 261(3), pages 835-848.
    10. Jens Poppenborg & Sigrid Knust, 2016. "Modeling and optimizing the evacuation of hospitals based on the MRCPSP with resource transfers," EURO Journal on Computational Optimization, Springer;EURO - The Association of European Operational Research Societies, vol. 4(3), pages 349-380, September.
    11. M. Vimala Rani & M. Mathirajan, 2020. "Performance evaluation of due-date based dispatching rules in dynamic scheduling of diffusion furnace," OPSEARCH, Springer;Operational Research Society of India, vol. 57(2), pages 462-512, June.
    12. Samà, Marcella & D’Ariano, Andrea & D’Ariano, Paolo & Pacciarelli, Dario, 2017. "Scheduling models for optimal aircraft traffic control at busy airports: Tardiness, priorities, equity and violations considerations," Omega, Elsevier, vol. 67(C), pages 81-98.
    13. Zoghby, Jeriad & Wesley Barnes, J. & Hasenbein, John J., 2005. "Modeling the reentrant job shop scheduling problem with setups for metaheuristic searches," European Journal of Operational Research, Elsevier, vol. 167(2), pages 336-348, December.
    14. Valls, Vicente & Angeles Perez, M. & Sacramento Quintanilla, M., 1998. "A tabu search approach to machine scheduling," European Journal of Operational Research, Elsevier, vol. 106(2-3), pages 277-300, April.
    15. Leonardo Lamorgese & Carlo Mannino, 2015. "An Exact Decomposition Approach for the Real-Time Train Dispatching Problem," Operations Research, INFORMS, vol. 63(1), pages 48-64, February.
    16. Carlo Mannino & Alessandro Mascis, 2009. "Optimal Real-Time Traffic Control in Metro Stations," Operations Research, INFORMS, vol. 57(4), pages 1026-1039, August.
    17. Marco Pranzo & Dario Pacciarelli, 2016. "An iterated greedy metaheuristic for the blocking job shop scheduling problem," Journal of Heuristics, Springer, vol. 22(4), pages 587-611, August.
    18. Guinet, Alain & Legrand, Marie, 1998. "Reduction of job-shop problems to flow-shop problems with precedence constraints," European Journal of Operational Research, Elsevier, vol. 109(1), pages 96-110, August.
    19. Julia Lange & Frank Werner, 2018. "Approaches to modeling train scheduling problems as job-shop problems with blocking constraints," Journal of Scheduling, Springer, vol. 21(2), pages 191-207, April.
    20. Leonardo Lamorgese & Carlo Mannino, 2019. "A Noncompact Formulation for Job-Shop Scheduling Problems in Traffic Management," Operations Research, INFORMS, vol. 67(6), pages 1586-1609, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:orspec:v:41:y:2019:i:4:d:10.1007_s00291-019-00567-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.