IDEAS home Printed from https://ideas.repec.org/a/spr/joinma/v27y2016i3d10.1007_s10845-014-0906-7.html
   My bibliography  Save this article

Branch-and-bound and PSO algorithms for no-wait job shop scheduling

Author

Listed:
  • Abdelhakim AitZai

    (USTHB University)

  • Brahim Benmedjdoub

    (USTHB University)

  • Mourad Boudhar

    (USTHB University)

Abstract

This paper deals with the no-wait job shop scheduling problem resolution. The problem is to find a schedule to minimize the makespan ( $$C_{max}$$ C m a x ), that is, the total completeness time of all jobs. The no-wait constraint occurs when two consecutive operations in a job must be processed without any waiting time either on or between machines. For this, we have proposed two different resolution methods, the first is an exact method based on the branch-and-bound algorithm, in which we have defined a new technique of branching. The second is a particular swarm optimization (PSO) algorithm, extended from the discrete version of PSO. In the proposed algorithm, we have defined the particle and the velocity structures, and an efficient approach is developed to move a particle to the new position. Moreover, we have adapted the timetabling procedure to find a good solution while respecting the no-wait constraint. Using the PSO method, we have reached good results compared to those in the literature.

Suggested Citation

  • Abdelhakim AitZai & Brahim Benmedjdoub & Mourad Boudhar, 2016. "Branch-and-bound and PSO algorithms for no-wait job shop scheduling," Journal of Intelligent Manufacturing, Springer, vol. 27(3), pages 679-688, June.
  • Handle: RePEc:spr:joinma:v:27:y:2016:i:3:d:10.1007_s10845-014-0906-7
    DOI: 10.1007/s10845-014-0906-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10845-014-0906-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10845-014-0906-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kalczynski, Pawel Jan & Kamburowski, Jerzy, 2007. "On no-wait and no-idle flow shops with makespan criterion," European Journal of Operational Research, Elsevier, vol. 178(3), pages 677-685, May.
    2. Nicholas G. Hall & Chelliah Sriskandarajah, 1996. "A Survey of Machine Scheduling Problems with Blocking and No-Wait in Process," Operations Research, INFORMS, vol. 44(3), pages 510-525, June.
    3. Sartaj Sahni & Yookun Cho, 1979. "Complexity of Scheduling Shops with No Wait in Process," Mathematics of Operations Research, INFORMS, vol. 4(4), pages 448-457, November.
    4. Mascis, Alessandro & Pacciarelli, Dario, 2002. "Job-shop scheduling with blocking and no-wait constraints," European Journal of Operational Research, Elsevier, vol. 143(3), pages 498-517, December.
    5. Abdelhakim AitZai & Mourad Boudhar, 2013. "Parallel branch-and-bound and parallel PSO algorithms for job shop scheduling problem with blocking," International Journal of Operational Research, Inderscience Enterprises Ltd, vol. 16(1), pages 14-37.
    6. Carlier, J. & Pinson, E., 1994. "Adjustment of heads and tails for the job-shop problem," European Journal of Operational Research, Elsevier, vol. 78(2), pages 146-161, October.
    7. Kravchenko, Svetlana A., 1998. "A polynomial algorithm for a two-machine no-wait job-shop scheduling problem," European Journal of Operational Research, Elsevier, vol. 106(1), pages 101-107, April.
    8. J. Carlier & E. Pinson, 1989. "An Algorithm for Solving the Job-Shop Problem," Management Science, INFORMS, vol. 35(2), pages 164-176, February.
    9. Abdelhakim AitZai & Brahim Benmedjdoub & Mourad Boudhar, 2012. "A branch and bound and parallel genetic algorithm for the job shop scheduling problem with blocking," International Journal of Operational Research, Inderscience Enterprises Ltd, vol. 14(3), pages 343-365.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bin Ji & Shujing Zhang & Samson S. Yu & Binqiao Zhang, 2023. "Mathematical Modeling and A Novel Heuristic Method for Flexible Job-Shop Batch Scheduling Problem with Incompatible Jobs," Sustainability, MDPI, vol. 15(3), pages 1-26, January.
    2. Allahverdi, Ali, 2016. "A survey of scheduling problems with no-wait in process," European Journal of Operational Research, Elsevier, vol. 255(3), pages 665-686.
    3. Abderraouf Maoudj & Brahim Bouzouia & Abdelfetah Hentout & Ahmed Kouider & Redouane Toumi, 2019. "Distributed multi-agent scheduling and control system for robotic flexible assembly cells," Journal of Intelligent Manufacturing, Springer, vol. 30(4), pages 1629-1644, April.
    4. Pei, Jun & Liu, Xinbao & Fan, Wenjuan & Pardalos, Panos M. & Lu, Shaojun, 2019. "A hybrid BA-VNS algorithm for coordinated serial-batching scheduling with deteriorating jobs, financial budget, and resource constraint in multiple manufacturers," Omega, Elsevier, vol. 82(C), pages 55-69.
    5. Baoyu Liao & Xingming Wang & Xing Zhu & Shanlin Yang & Panos M. Pardalos, 2020. "Less is more approach for competing groups scheduling with different learning effects," Journal of Combinatorial Optimization, Springer, vol. 39(1), pages 33-54, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Allahverdi, Ali, 2016. "A survey of scheduling problems with no-wait in process," European Journal of Operational Research, Elsevier, vol. 255(3), pages 665-686.
    2. Christoph Schuster, 2006. "No-wait Job Shop Scheduling: Tabu Search and Complexity of Subproblems," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 63(3), pages 473-491, July.
    3. Raaymakers, W. H. M. & Hoogeveen, J. A., 2000. "Scheduling multipurpose batch process industries with no-wait restrictions by simulated annealing," European Journal of Operational Research, Elsevier, vol. 126(1), pages 131-151, October.
    4. D'Ariano, Andrea & Pacciarelli, Dario & Pranzo, Marco, 2007. "A branch and bound algorithm for scheduling trains in a railway network," European Journal of Operational Research, Elsevier, vol. 183(2), pages 643-657, December.
    5. Meloni, Carlo & Pranzo, Marco & Samà, Marcella, 2022. "Evaluation of VaR and CVaR for the makespan in interval valued blocking job shops," International Journal of Production Economics, Elsevier, vol. 247(C).
    6. A. Ozolins, 2020. "A new exact algorithm for no-wait job shop problem to minimize makespan," Operational Research, Springer, vol. 20(4), pages 2333-2363, December.
    7. Diarmuid Grimes & Emmanuel Hebrard, 2015. "Solving Variants of the Job Shop Scheduling Problem Through Conflict-Directed Search," INFORMS Journal on Computing, INFORMS, vol. 27(2), pages 268-284, May.
    8. Nikhil Bansal & Mohammad Mahdian & Maxim Sviridenko, 2005. "Minimizing Makespan in No-Wait Job Shops," Mathematics of Operations Research, INFORMS, vol. 30(4), pages 817-831, November.
    9. Zhu, Jie & Li, Xiaoping & Wang, Qian, 2009. "Complete local search with limited memory algorithm for no-wait job shops to minimize makespan," European Journal of Operational Research, Elsevier, vol. 198(2), pages 378-386, October.
    10. Mascis, Alessandro & Pacciarelli, Dario, 2002. "Job-shop scheduling with blocking and no-wait constraints," European Journal of Operational Research, Elsevier, vol. 143(3), pages 498-517, December.
    11. Ahmadian, Mohammad Mahdi & Khatami, Mostafa & Salehipour, Amir & Cheng, T.C.E., 2021. "Four decades of research on the open-shop scheduling problem to minimize the makespan," European Journal of Operational Research, Elsevier, vol. 295(2), pages 399-426.
    12. Jain, A. S. & Meeran, S., 1999. "Deterministic job-shop scheduling: Past, present and future," European Journal of Operational Research, Elsevier, vol. 113(2), pages 390-434, March.
    13. Guinet, Alain & Legrand, Marie, 1998. "Reduction of job-shop problems to flow-shop problems with precedence constraints," European Journal of Operational Research, Elsevier, vol. 109(1), pages 96-110, August.
    14. Sheen, Gwo-Ji & Liao, Lu-Wen, 2007. "A branch and bound algorithm for the one-machine scheduling problem with minimum and maximum time lags," European Journal of Operational Research, Elsevier, vol. 181(1), pages 102-116, August.
    15. Francis Sourd, 2009. "New Exact Algorithms for One-Machine Earliness-Tardiness Scheduling," INFORMS Journal on Computing, INFORMS, vol. 21(1), pages 167-175, February.
    16. Alvarez-Valdes, R. & Fuertes, A. & Tamarit, J. M. & Gimenez, G. & Ramos, R., 2005. "A heuristic to schedule flexible job-shop in a glass factory," European Journal of Operational Research, Elsevier, vol. 165(2), pages 525-534, September.
    17. Baptiste, Philippe & Peridy, Laurent & Pinson, Eric, 2003. "A branch and bound to minimize the number of late jobs on a single machine with release time constraints," European Journal of Operational Research, Elsevier, vol. 144(1), pages 1-11, January.
    18. Jayanth Krishna Mogali & Joris Kinable & Stephen F. Smith & Zachary B. Rubinstein, 2021. "Scheduling for multi-robot routing with blocking and enabling constraints," Journal of Scheduling, Springer, vol. 24(3), pages 291-318, June.
    19. Francis Sourd & Wim Nuijten, 2000. "Multiple-Machine Lower Bounds for Shop-Scheduling Problems," INFORMS Journal on Computing, INFORMS, vol. 12(4), pages 341-352, November.
    20. Detienne, Boris & Pinson, Éric & Rivreau, David, 2010. "Lagrangian domain reductions for the single machine earliness-tardiness problem with release dates," European Journal of Operational Research, Elsevier, vol. 201(1), pages 45-54, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joinma:v:27:y:2016:i:3:d:10.1007_s10845-014-0906-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.