IDEAS home Printed from https://ideas.repec.org/a/zbw/espost/267902.html
   My bibliography  Save this article

Multi-objective spatial optimization to balance trade-offs between farmland bird diversity and potential agricultural net returns

Author

Listed:
  • Wesemeyer, Maximilian
  • Kamp, Johannes
  • Schmitz, Tillman
  • Müller, Daniel
  • Lakes, Tobia

Abstract

Global farmland biodiversity has declined rapidly in recent decades due to the homogenization of agricultural landscapes, including an increase in field sizes and decrease in woody features, such as hedgerows. Restructuring landscapes by (re)introducing woody features and decreasing field sizes can support biodiversity but at the cost of lower returns in farming. Striking a balance between biodiversity and agricultural net returns is increasingly pertinent. Here, we use spatial multi-objective optimization to allocate woody features and adapt average field sizes at the landscape scale to assess the trade-off between biodiversity, measured as the occurrence of farmland birds, and potential net returns from crop production. Our results suggest that, compared to the current landscape configuration, both agricultural net returns and biodiversity can be simultaneously increased. Restructuring only 5% of the landscape can improve bird abundance by 2% and generate about €2 million in agricultural net returns. We show that increases in farmland bird diversity are highly dependent on the location and on farmers’ willingness to accept negative impacts on agricultural net returns. Our spatially explicit approach supports spatially targeted land use planning that can strike a better balance between the economic objectives of farmers and the societal desire to conserve biodiversity.

Suggested Citation

  • Wesemeyer, Maximilian & Kamp, Johannes & Schmitz, Tillman & Müller, Daniel & Lakes, Tobia, 2023. "Multi-objective spatial optimization to balance trade-offs between farmland bird diversity and potential agricultural net returns," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 345, pages 1-10.
  • Handle: RePEc:zbw:espost:267902
    DOI: 10.1016/j.agee.2022.108316
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/267902/1/Wesemeyer_2023_farmland_bird_diversity.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.1016/j.agee.2022.108316?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Law, Elizabeth A. & Macchi, Leandro & Baumann, Matthias & Decarre, Julieta & Gavier-Pizarro, Gregorio & Levers, Christian & Mastrangelo, Matías E. & Murray, Francisco & Müller, Daniel & Piquer-Rodrígu, 2021. "Fading opportunities for mitigating agriculture-environment trade-offs in a south American deforestation hotspot," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 262.
    2. Timo Kuosmanen & Mika Kortelainen, 2005. "Measuring Eco‐efficiency of Production with Data Envelopment Analysis," Journal of Industrial Ecology, Yale University, vol. 9(4), pages 59-72, October.
    3. Kirchweger, Stefan & Clough, Yann & Kapfer, Martin & Steffan-Dewenter, Ingolf & Kantelhardt, Jochen, 2020. "Do improved pollination services outweigh farm-economic disadvantages of working in small-structured agricultural landscapes? – Development and application of a bio-economic model," Ecological Economics, Elsevier, vol. 169(C).
    4. Rosa-Schleich, Julia & Loos, Jacqueline & Mußhoff, Oliver & Tscharntke, Teja, 2019. "Ecological-economic trade-offs of Diversified Farming Systems – A review," Ecological Economics, Elsevier, vol. 160(C), pages 251-263.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jänicke, Clemens & Wesemeyer, Maximilian & Chiarella, Cristina & Lakes, Tobia & Levers, Christian & Meyfroidt, Patrick & Müller, Daniel & Pratzer, Marie & Rufin, Philippe, 2024. "Can we estimate farm size from field size? An empirical investigation of the field size to farm size relationship," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 220.
    2. Pham Vu Hong Son & Luu Ngoc Quynh Khoi, 2024. "Artificial intelligent support model for multiple criteria decision in construction management," OPSEARCH, Springer;Operational Research Society of India, vol. 61(4), pages 2218-2241, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Weituschat, Chiara Sophia & Pascucci, Stefano & Materia, Valentina Cristiana & Caracciolo, Francesco, 2023. "Can contract farming support sustainable intensification in agri-food value chains?," Ecological Economics, Elsevier, vol. 211(C).
    2. Hualin Xie & Yingqian Huang & Qianru Chen & Yanwei Zhang & Qing Wu, 2019. "Prospects for Agricultural Sustainable Intensification: A Review of Research," Land, MDPI, vol. 8(11), pages 1-27, October.
    3. Meike Weltin & Silke Hüttel, 2023. "Sustainable Intensification Farming as an Enabler for Farm Eco-Efficiency?," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 84(1), pages 315-342, January.
    4. Tianqun Xu & Ping Gao & Qian Yu & Debin Fang, 2017. "An Improved Eco-Efficiency Analysis Framework Based on Slacks-Based Measure Method," Sustainability, MDPI, vol. 9(6), pages 1-21, June.
    5. Martín-García, Jaime & Gómez-Limón, José A. & Arriaza, Manuel, 2024. "Conversion to organic farming: Does it change the economic and environmental performance of fruit farms?," Ecological Economics, Elsevier, vol. 220(C).
    6. Trinks, Arjan & Mulder, Machiel & Scholtens, Bert, 2020. "An Efficiency Perspective on Carbon Emissions and Financial Performance," Ecological Economics, Elsevier, vol. 175(C).
    7. James P. Herrera & Jean Yves Rabezara & Ny Anjara Fifi Ravelomanantsoa & Miranda Metz & Courtni France & Ajilé Owens & Michelle Pender & Charles L. Nunn & Randall A. Kramer, 2021. "Food insecurity related to agricultural practices and household characteristics in rural communities of northeast Madagascar," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 13(6), pages 1393-1405, December.
    8. Alfredsson, Eva & Månsson, Jonas & Vikström, Peter, 2016. "Internalising external environmental effects in efficiency analysis," Economic Analysis and Policy, Elsevier, vol. 51(C), pages 22-31.
    9. Xiangxiang Sun & Lawrence Loh, 2019. "Sustainability Governance in China: An Analysis of Regional Ecological Efficiency," Sustainability, MDPI, vol. 11(7), pages 1-16, April.
    10. Igor Grigorev & Olga Kunickaya & Albert Burgonutdinov & Olga Burmistrova & Varvara Druzyanova & Nikolay Dolmatov & Anna Voronova & Alexey Kotov, 2022. "Modeling the effect of skidded timber bunches on forest soil compaction," The Journal of Defense Modeling and Simulation, , vol. 19(3), pages 551-559, July.
    11. Kagawa, Shigemi, 2008. "How does Japanese compliance with the Kyoto Protocol affect environmental productivity in China and Japan?," Structural Change and Economic Dynamics, Elsevier, vol. 19(2), pages 173-188, June.
    12. Santosh R. Ghimire & Adam C. Nayak & Joel Corona & Rajbir Parmar & Raghavan Srinivasan & Katie Mendoza & John M. Johnston, 2022. "Holistic Sustainability Assessment of Riparian Buffer Designs: Evaluation of Alternative Buffer Policy Scenarios Integrating Stream Water Quality and Costs," Sustainability, MDPI, vol. 14(19), pages 1-33, September.
    13. Kolady, Deepthi E. & Van Der Sluis, Evert, 2021. "Adoption Determinants of Precision Agriculture Technologies and Conservation Agriculture: Evidence from South Dakota," Western Economics Forum, Western Agricultural Economics Association, vol. 19(2), December.
    14. Mercedes Beltrán-Esteve & José Gómez-Limón & Andrés Picazo-Tadeo & Ernest Reig-Martínez, 2014. "A metafrontier directional distance function approach to assessing eco-efficiency," Journal of Productivity Analysis, Springer, vol. 41(1), pages 69-83, February.
    15. Hoang, Viet-Ngu & Nguyen, Trung Thanh, 2013. "Analysis of environmental efficiency variations: A nutrient balance approach," Ecological Economics, Elsevier, vol. 86(C), pages 37-46.
    16. George Halkos & Nickolaos Tzeremes & Panayiotis Tzeremes, 2015. "A nonparametric approach for evaluating long-term energy policy scenarios: an application to the Greek energy system," Journal of Economic Structures, Springer;Pan-Pacific Association of Input-Output Studies (PAPAIOS), vol. 4(1), pages 1-14, December.
    17. Harald Dyckhoff, 2018. "Multi-criteria production theory: foundation of non-financial and sustainability performance evaluation," Journal of Business Economics, Springer, vol. 88(7), pages 851-882, September.
    18. Puertas, Rosa & Guaita-Martinez, José M. & Carracedo, Patricia & Ribeiro-Soriano, Domingo, 2022. "Analysis of European environmental policies: Improving decision making through eco-efficiency," Technology in Society, Elsevier, vol. 70(C).
    19. Dardonville, Manon & Legrand, Baptiste & Clivot, Hugues & Bernardin, Claire & Bockstaller, Christian & Therond, Olivier, 2022. "Assessment of ecosystem services and natural capital dynamics in agroecosystems," Ecosystem Services, Elsevier, vol. 54(C).
    20. Amer Ait Sidhoum & K Hervé Dakpo & Laure Latruffe, 2022. "Trade-offs between economic, environmental and social sustainability on farms using a latent class frontier efficiency model: Evidence for Spanish crop farms," PLOS ONE, Public Library of Science, vol. 17(1), pages 1-17, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:espost:267902. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/zbwkide.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.