IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v36y2022i9d10.1007_s11269-022-03183-4.html
   My bibliography  Save this article

Multi-Strategy Improved Slime Mould Algorithm and its Application in Optimal Operation of Cascade Reservoirs

Author

Listed:
  • Hong Miao

    (Sichuan University)

  • Zhongrui Qiu

    (Sichuan University)

  • Chengbi Zeng

    (Sichuan University)

Abstract

Slime mould algorithm (SMA) is extensively used in engineering applications such as the parameter estimation of photovoltaic models, image segmentation, economic emission dispatch, etc. To improve SMA’s inherent search stagnation, slow convergence speed and poor transition ability when transferring from exploration to exploitation, especially for optimization problems with high dimensions and many local optimal values, a multi-strategy improved slime mould algorithm (MSMA) is proposed in this paper. The elite chaotic search strategy (ECSS) is adopted to improve the ability of the algorithm to explore near the elite individuals. Moreover, the z parameter of SMA, which originally is a constant, is substituted by a nonlinear convergence factor with chaotic disturbance to enhance the algorithm’s transition ability between exploration and exploitation. MSMA is compared with other 9 classical or advanced metaheuristic algorithms by optimizing 12 benchmark functions, and the comparative results show that MSMA has better performance in solving accuracy, convergence speed and robustness. Finally, to verify the effectiveness of MSMA, MSMA and the other 9 algorithms are applied to a real cascade hydropower reservoirs system along Dadu River in China to maximize the annual power generation. The numerical simulation results show that with the proposed MSMA, the average power generation in the wet year, the normal year and the dry year are 1.11%–19.22%, 0.35%–13.21% and 0.84%–12.85% more than with other algorithms respectively, which verifies the superiority and effectiveness of MSMA for cascade reservoirs operation problem.

Suggested Citation

  • Hong Miao & Zhongrui Qiu & Chengbi Zeng, 2022. "Multi-Strategy Improved Slime Mould Algorithm and its Application in Optimal Operation of Cascade Reservoirs," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(9), pages 3029-3048, July.
  • Handle: RePEc:spr:waterr:v:36:y:2022:i:9:d:10.1007_s11269-022-03183-4
    DOI: 10.1007/s11269-022-03183-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-022-03183-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-022-03183-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Liu, Yun & Heidari, Ali Asghar & Ye, Xiaojia & Liang, Guoxi & Chen, Huiling & He, Caitou, 2021. "Boosting slime mould algorithm for parameter identification of photovoltaic models," Energy, Elsevier, vol. 234(C).
    2. Iman Ahmadianfar & Saeed Noshadian & Nadir Ahmed Elagib & Meysam Salarijazi, 2021. "Robust Diversity-based Sine-Cosine Algorithm for Optimizing Hydropower Multi-reservoir Systems," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(11), pages 3513-3538, September.
    3. Wen-jing Niu & Zhong-kai Feng & Shuai Liu & Yu-bin Chen & Yin-shan Xu & Jun Zhang, 2021. "Multiple Hydropower Reservoirs Operation by Hyperbolic Grey Wolf Optimizer Based on Elitism Selection and Adaptive Mutation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(2), pages 573-591, January.
    4. Kobra Rahmati & Parisa-Sadat Ashofteh & Hugo A. Loáiciga, 2021. "Application of the Grasshopper Optimization Algorithm (GOA) to the Optimal Operation of Hydropower Reservoir Systems Under Climate Change," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(13), pages 4325-4348, October.
    5. Mohammad Reza Sharifi & Saeid Akbarifard & Kourosh Qaderi & Mohamad Reza Madadi, 2021. "Developing MSA Algorithm by New Fitness-Distance-Balance Selection Method to Optimize Cascade Hydropower Reservoirs Operation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(1), pages 385-406, January.
    6. Ali Zarei & Sayed-Farhad Mousavi & Madjid Eshaghi Gordji & Hojat Karami, 2019. "Optimal Reservoir Operation Using Bat and Particle Swarm Algorithm and Game Theory Based on Optimal Water Allocation among Consumers," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(9), pages 3071-3093, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Behrang Beiranvand & Parisa-Sadat Ashofteh, 2023. "A Systematic Review of Optimization of Dams Reservoir Operation Using the Meta-heuristic Algorithms," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(9), pages 3457-3526, July.
    2. Amir Hatamkhani & Mojtaba Shourian & Ali Moridi, 2021. "Optimal Design and Operation of a Hydropower Reservoir Plant Using a WEAP-Based Simulation–Optimization Approach," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(5), pages 1637-1652, March.
    3. Saeid Akbarifard & Mohammad Zounemat-Kermani, 2024. "New Hybrid Optimization Approaches for the Optimal Management of Surface Water Resources Systems," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 38(15), pages 6007-6023, December.
    4. Rong Tang & Ke Li & Wei Ding & Yuntao Wang & Huicheng Zhou & Guangtao Fu, 2020. "Reference Point Based Multi-Objective Optimization of Reservoir Operation: a Comparison of Three Algorithms," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(3), pages 1005-1020, February.
    5. Hamid Kardan Moghaddam & Saman Javadi & Timothy O. Randhir & Neda Kavehkar, 2022. "A Multi-Indicator, Non-Cooperative Game Model to Resolve Conflicts for Aquifer Restoration," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(14), pages 5521-5543, November.
    6. Fan, Yi & Wang, Pengjun & Heidari, Ali Asghar & Chen, Huiling & HamzaTurabieh, & Mafarja, Majdi, 2022. "Random reselection particle swarm optimization for optimal design of solar photovoltaic modules," Energy, Elsevier, vol. 239(PA).
    7. Xiaobing Yu & Xuejing Wu & Wenguan Luo, 2022. "Parameter Identification of Photovoltaic Models by Hybrid Adaptive JAYA Algorithm," Mathematics, MDPI, vol. 10(2), pages 1-28, January.
    8. Javad Jamshidi & Mojtaba Shourian, 2019. "Hedging Rules-Based Optimal Reservoir Operation Using Bat Algorithm," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(13), pages 4525-4538, October.
    9. Lingquan Dai & Huichao Dai & Haibo Liu & Yu Wang & Jiali Guo & Zhuosen Cai & Chenxi Mi, 2020. "Development of an Optimal Model for the Xiluodu-Xiangjiaba Cascade Reservoir System Considering the Downstream Environmental Flow," Sustainability, MDPI, vol. 12(3), pages 1-18, January.
    10. Bao-Jian Li & Guo-Liang Sun & Yan Liu & Wen-Chuan Wang & Xu-Dong Huang, 2022. "Monthly Runoff Forecasting Using Variational Mode Decomposition Coupled with Gray Wolf Optimizer-Based Long Short-term Memory Neural Networks," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(6), pages 2095-2115, April.
    11. Pham Vu Hong Son & Luu Ngoc Quynh Khoi, 2024. "Artificial intelligent support model for multiple criteria decision in construction management," OPSEARCH, Springer;Operational Research Society of India, vol. 61(4), pages 2218-2241, December.
    12. Shaheen, Abdullah M. & Ginidi, Ahmed R. & El-Sehiemy, Ragab A. & El-Fergany, Attia & Elsayed, Abdallah M., 2023. "Optimal parameters extraction of photovoltaic triple diode model using an enhanced artificial gorilla troops optimizer," Energy, Elsevier, vol. 283(C).
    13. Martin Ćalasan & Mujahed Al-Dhaifallah & Ziad M. Ali & Shady H. E. Abdel Aleem, 2022. "Comparative Analysis of Different Iterative Methods for Solving Current–Voltage Characteristics of Double and Triple Diode Models of Solar Cells," Mathematics, MDPI, vol. 10(17), pages 1-26, August.
    14. Hamid Reza Yavari & Amir Robati, 2021. "Developing Water Cycle Algorithm for Optimal Operation in Multi-reservoirs Hydrologic System," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(8), pages 2281-2303, June.
    15. Lan, Yang & Changshi, Liu, 2023. "Conductance is responsible for the power conversion efficiency of solar cell," Energy, Elsevier, vol. 278(PB).
    16. Zhenxiang Jiang & Bo Wu & Hui Chen, 2023. "Dam Health Diagnosis Model Based on Cumulative Distribution Function," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(11), pages 4293-4308, September.
    17. Wu, Yuqiang & Liao, Shengli & Liu, Benxi & Cheng, Chuntian & Zhao, Hongye & Fang, Zhou & Lu, Jia, 2024. "Short-term load distribution model for cascade giant hydropower stations with complex hydraulic and electrical connections," Renewable Energy, Elsevier, vol. 232(C).
    18. Muhyaddin Rawa & Abdullah Abusorrah & Yusuf Al-Turki & Martin Calasan & Mihailo Micev & Ziad M. Ali & Saad Mekhilef & Hussain Bassi & Hatem Sindi & Shady H. E. Abdel Aleem, 2022. "Estimation of Parameters of Different Equivalent Circuit Models of Solar Cells and Various Photovoltaic Modules Using Hybrid Variants of Honey Badger Algorithm and Artificial Gorilla Troops Optimizer," Mathematics, MDPI, vol. 10(7), pages 1-31, March.
    19. Slim Abid & Ali M. El-Rifaie & Mostafa Elshahed & Ahmed R. Ginidi & Abdullah M. Shaheen & Ghareeb Moustafa & Mohamed A. Tolba, 2023. "Development of Slime Mold Optimizer with Application for Tuning Cascaded PD-PI Controller to Enhance Frequency Stability in Power Systems," Mathematics, MDPI, vol. 11(8), pages 1-32, April.
    20. Choulli, Imade & Elyaqouti, Mustapha & Arjdal, El hanafi & Ben hmamou, Dris & Saadaoui, Driss & Lidaighbi, Souad & Elhammoudy, Abdelfattah & Abazine, Ismail, 2023. "Hybrid optimization based on the analytical approach and the particle swarm optimization algorithm (Ana-PSO) for the extraction of single and double diode models parameters," Energy, Elsevier, vol. 283(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:36:y:2022:i:9:d:10.1007_s11269-022-03183-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.