IDEAS home Printed from https://ideas.repec.org/a/spr/opmare/v15y2022i1d10.1007_s12063-021-00220-0.html
   My bibliography  Save this article

The future of industry 4.0 and the circular economy in Chinese supply chain: In the Era of post-COVID-19 pandemic

Author

Listed:
  • Wang Dongfang

    (Fujian Normal University
    Wuyi University)

  • Pablo Ponce

    (Carrera de Economía, Universidad Nacional de Loja)

  • Zhang Yu

    (Chang’an University
    ILMA University)

  • Katerine Ponce

    (Carrera de Ingeniería Ambiental, Universidad Politécnica Salesiana)

  • Muhammad Tanveer

    (Prince Sultan University Rafah Street 11586)

Abstract

The demand for new productive factors is increasingly required, exacerbated in a scenario in which a linear economy prevails. The circular economy (CE) adoption is a proposal to guarantee environmental sustainability and redirect an obsolete process such as the linear economy. Thus, one of the main factors that allow achieving sustainability is Industry 4.0 (I4.0). In addition, the research aims to evaluate the role of I4.0 during the COVID-19 pandemic in China. The literature review process defines ten future projections with potential for the CE's adoption. The two-round Delphi approach was developed with 54 CE experts to evaluate the projections. In both rounds, the probability of occurrence up to 2030, its impact on the CE and its desirability were evaluated. Likewise, the qualitative criteria of the experts were coded to evaluate the projections. From the ten projections, four are those with the highest probability of occurrence (EP > 70%), with high impact (I > 3.5) and desirability of occurrence (I > 3.5). Expert evaluations make it possible to identify that Industry 4.0 and the digital skills of workers, their financing, and the efficiency of Government policies have a high probability of occurrence in the adoption of the CE in 2030. This research responds to the special call of papers providing evidence favouring the implementation of I4.0 in the CE from a holistic approach to draw a roadmap towards adopting the CE practices.

Suggested Citation

  • Wang Dongfang & Pablo Ponce & Zhang Yu & Katerine Ponce & Muhammad Tanveer, 2022. "The future of industry 4.0 and the circular economy in Chinese supply chain: In the Era of post-COVID-19 pandemic," Operations Management Research, Springer, vol. 15(1), pages 342-356, June.
  • Handle: RePEc:spr:opmare:v:15:y:2022:i:1:d:10.1007_s12063-021-00220-0
    DOI: 10.1007/s12063-021-00220-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s12063-021-00220-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s12063-021-00220-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Alejandro Padilla-Rivera & Sara Russo-Garrido & Nicolas Merveille, 2020. "Addressing the Social Aspects of a Circular Economy: A Systematic Literature Review," Sustainability, MDPI, vol. 12(19), pages 1-17, September.
    2. Xie, Mengmeng & Ding, Lin & Xia, Yan & Guo, Jianfeng & Pan, Jiaofeng & Wang, Huijuan, 2021. "Does artificial intelligence affect the pattern of skill demand? Evidence from Chinese manufacturing firms," Economic Modelling, Elsevier, vol. 96(C), pages 295-309.
    3. Yu, Yubing & Zhang, Justin Zuopeng & Cao, Yanhong & Kazancoglu, Yigit, 2021. "Intelligent transformation of the manufacturing industry for Industry 4.0: Seizing financial benefits from supply chain relationship capital through enterprise green management," Technological Forecasting and Social Change, Elsevier, vol. 172(C).
    4. Yang, Mian & Hou, Yaru & Fang, Chao & Duan, Hongbo, 2020. "Constructing energy-consuming right trading system for China's manufacturing industry in 2025," Energy Policy, Elsevier, vol. 144(C).
    5. Rowe, Gene & Wright, George, 1999. "The Delphi technique as a forecasting tool: issues and analysis," International Journal of Forecasting, Elsevier, vol. 15(4), pages 353-375, October.
    6. Mutezo, G. & Mulopo, J., 2021. "A review of Africa's transition from fossil fuels to renewable energy using circular economy principles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    7. Mignacca, Benito & Locatelli, Giorgio & Sainati, Tristano, 2020. "Deeds not words: Barriers and remedies for Small Modular nuclear Reactors," Energy, Elsevier, vol. 206(C).
    8. Li, Guo & Wu, Huamin & Sethi, Suresh P. & Zhang, Xiang, 2021. "Contracting green product supply chains considering marketing efforts in the circular economy era," International Journal of Production Economics, Elsevier, vol. 234(C).
    9. Su, Chang & Urban, Frauke, 2021. "Circular economy for clean energy transitions: A new opportunity under the COVID-19 pandemic," Applied Energy, Elsevier, vol. 289(C).
    10. Pablo Ponce & José Álvarez-García & Johanna Medina & María de la Cruz del Río-Rama, 2021. "Financial Development, Clean Energy, and Human Capital: Roadmap towards Sustainable Growth in América Latina," Energies, MDPI, vol. 14(13), pages 1-16, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fareri, Silvia & Apreda, Riccardo & Mulas, Valentina & Alonso, Ruben, 2023. "The worker profiler: Assessing the digital skill gaps for enhancing energy efficiency in manufacturing," Technological Forecasting and Social Change, Elsevier, vol. 196(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Luoma, Päivi & Penttinen, Esko & Tapio, Petri & Toppinen, Anne, 2022. "Future images of data in circular economy for textiles," Technological Forecasting and Social Change, Elsevier, vol. 182(C).
    2. Prianto Budi Saptono & Gustofan Mahmud & Intan Pratiwi & Dwi Purwanto & Ismail Khozen & Muhamad Akbar Aditama & Siti Khodijah & Maria Eurelia Wayan & Rina Yuliastuty Asmara & Ferry Jie, 2023. "Development of Climate-Related Disclosure Indicators for Application in Indonesia: A Delphi Method Study," Sustainability, MDPI, vol. 15(14), pages 1-25, July.
    3. Mohammad R. Altimania & Nadia A. Elsonbaty & Mohamed A. Enany & Mahmoud M. Gamil & Saeed Alzahrani & Musfer Hasan Alraddadi & Ruwaybih Alsulami & Mohammad Alhartomi & Moahd Alghuson & Fares Alatawi & , 2023. "Optimal Performance of Photovoltaic-Powered Water Pumping System," Mathematics, MDPI, vol. 11(3), pages 1-21, February.
    4. Lin, Tun & De Guzman, Franklin, 2007. "Tourism for pro-poor and sustainable growth: economic analysis of tourism projects," MPRA Paper 24994, University Library of Munich, Germany.
    5. Di Zio, Simone & Bolzan, Mario & Marozzi, Marco, 2021. "Classification of Delphi outputs through robust ranking and fuzzy clustering for Delphi-based scenarios," Technological Forecasting and Social Change, Elsevier, vol. 173(C).
    6. Litsiou, Konstantia & Polychronakis, Yiannis & Karami, Azhdar & Nikolopoulos, Konstantinos, 2022. "Relative performance of judgmental methods for forecasting the success of megaprojects," International Journal of Forecasting, Elsevier, vol. 38(3), pages 1185-1196.
    7. Alyami, Saleh. H. & Rezgui, Yacine & Kwan, Alan, 2013. "Developing sustainable building assessment scheme for Saudi Arabia: Delphi consultation approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 43-54.
    8. Ngoy Kabemba S. & Mwiya Balimu & Mwanaumo Erastus & Chisumbe Sampa & Petere Gaida, 2023. "Factors Influencing Professional Indemnity Insurance Use in Construction Risk Management," Baltic Journal of Real Estate Economics and Construction Management, Sciendo, vol. 11(1), pages 199-220, January.
    9. Yongqin Niu, 2024. "Toward a greener energy transition: examining the effects of circular economy and carbon footprint for sustainable development," Economic Change and Restructuring, Springer, vol. 57(2), pages 1-22, April.
    10. van Asselt, E.D. & Meuwissen, M.P.M. & van Asseldonk, M.A.P.M. & Sterrenburg, P. & Mengelers, M.J.B. & van der Fels-Klerx, H.J., 2011. "Approach for a pro-active emerging risk system on biofuel by-products in feed," Food Policy, Elsevier, vol. 36(3), pages 421-429, June.
    11. Alhadhrami, Saeed & Soto, Gabriel J & Lindley, Ben, 2023. "Dispatch analysis of flexible power operation with multi-unit small modular reactors," Energy, Elsevier, vol. 280(C).
    12. Daniel Reißmann & Daniela Thrän & Alberto Bezama, 2018. "Key Development Factors of Hydrothermal Processes in Germany by 2030: A Fuzzy Logic Analysis," Energies, MDPI, vol. 11(12), pages 1-20, December.
    13. Yugang He & Ziqian Zhang, 2022. "Energy and Economic Effects of the COVID-19 Pandemic: Evidence from OECD Countries," Sustainability, MDPI, vol. 14(19), pages 1-13, September.
    14. Myeonggil Choi & Changhan Lee, 2015. "Information Security Management as a Bridge in Cloud Systems from Private to Public Organizations," Sustainability, MDPI, vol. 7(9), pages 1-20, August.
    15. Odysseus Manoliadis & Ioannis Tsolas & Alexandra Nakou, 2006. "Sustainable construction and drivers of change in Greece: a Delphi study," Construction Management and Economics, Taylor & Francis Journals, vol. 24(2), pages 113-120.
    16. Kumar, Shantanu & Mehany, Mohammed S.Hashem M., 2022. "A standardized framework for quantitative assessment of cities’ socioeconomic resilience and its improvement measures," Socio-Economic Planning Sciences, Elsevier, vol. 79(C).
    17. Joanicjusz Nazarko & Ewa Chodakowska & Łukasz Nazarko, 2022. "Evaluating the Transition of the European Union Member States towards a Circular Economy," Energies, MDPI, vol. 15(11), pages 1-24, May.
    18. Grote, Matt & Waterson, Ben & Rudolph, Felix, 2021. "The impact of strategic transport policies on future urban traffic management systems," Transport Policy, Elsevier, vol. 110(C), pages 402-414.
    19. Haarhaus, Tim & Liening, Andreas, 2020. "Building dynamic capabilities to cope with environmental uncertainty: The role of strategic foresight," Technological Forecasting and Social Change, Elsevier, vol. 155(C).
    20. Julia A. Minson & Jennifer S. Mueller & Richard P. Larrick, 2018. "The Contingent Wisdom of Dyads: When Discussion Enhances vs. Undermines the Accuracy of Collaborative Judgments," Management Science, INFORMS, vol. 64(9), pages 4177-4192, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:opmare:v:15:y:2022:i:1:d:10.1007_s12063-021-00220-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.