IDEAS home Printed from https://ideas.repec.org/a/spr/operea/v23y2023i2d10.1007_s12351-023-00756-y.html
   My bibliography  Save this article

Bi-objective bi-level optimization for integrating lane-level closure and reversal in redesigning transportation networks

Author

Listed:
  • Qiang Zhang

    (Fuzhou University)

  • Shi Qiang Liu

    (Fuzhou University)

  • Andrea D’Ariano

    (Roma Tre University)

Abstract

Traditionally, traffic congestion was alleviated through significantly upgrading the infrastructure of transportation networks. However, building new roads or adding more lanes to a main road needs huge expenses. A better cost-effective approach is to redesign and fine-tune transportation networks by closing and reversing existing lanes. This paper aims at developing an optimal scheme for lane-level closure and reversal to improve the performance of existing transportation networks with a fairly tight budget. We call this new problem Lane-level Closure and Reversal Problem (LCRP). By considering the capacities of all lanes of a road, two different bi-objective bi-level programs (called the arc-based and lane-based models) are developed to formulate the LCRP. Furthermore, our proposed formulations consider the elastic traffic demand and the elimination of conflict points resulting from reversing lanes. A hybrid machine learning and bi-objective optimization (MLBO) algorithm is developed to overcome the curse of dimensionality of the bi-level programs, especially for the land-based model that is more general but with higher computational complexity. The proposed methodology is illustrated by a small-size numerical example and verified by a real-world case study from Winnipeg (i.e., a benchmark transportation network). Computational results show that the integrated lane-level closure and reversal model can achieve a 0.52% reduction in the total travel time, which is significantly better than the 0.05% reduction individually obtained by arc-level closure or the 0.10% reduction obtained by arc-level reversal. The proposed methodology is beneficial for the traffic management bureau to make a more precise decision in redesigning transportation networks in practice.

Suggested Citation

  • Qiang Zhang & Shi Qiang Liu & Andrea D’Ariano, 2023. "Bi-objective bi-level optimization for integrating lane-level closure and reversal in redesigning transportation networks," Operational Research, Springer, vol. 23(2), pages 1-51, June.
  • Handle: RePEc:spr:operea:v:23:y:2023:i:2:d:10.1007_s12351-023-00756-y
    DOI: 10.1007/s12351-023-00756-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s12351-023-00756-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s12351-023-00756-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. repec:cup:cbooks:9780511771576 is not listed on IDEAS
    2. Xie, Chi & Lin, Dung-Ying & Travis Waller, S., 2010. "A dynamic evacuation network optimization problem with lane reversal and crossing elimination strategies," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 46(3), pages 295-316, May.
    3. S. F. A. Batista & Ludovic Leclercq, 2019. "Regional Dynamic Traffic Assignment Framework for Macroscopic Fundamental Diagram Multi-regions Models," Transportation Science, INFORMS, vol. 53(6), pages 1563-1590, November.
    4. Dafermos, Stella & Nagurney, Anna, 1984. "On some traffic equilibrium theory paradoxes," Transportation Research Part B: Methodological, Elsevier, vol. 18(2), pages 101-110, April.
    5. Frédéric Babonneau & Jean-Philippe Vial, 2008. "An Efficient Method to Compute Traffic Assignment Problems with Elastic Demands," Transportation Science, INFORMS, vol. 42(2), pages 249-260, May.
    6. Wang, Yi & Szeto, W.Y. & Han, Ke & Friesz, Terry L., 2018. "Dynamic traffic assignment: A review of the methodological advances for environmentally sustainable road transportation applications," Transportation Research Part B: Methodological, Elsevier, vol. 111(C), pages 370-394.
    7. Yin, Jiateng & D’Ariano, Andrea & Wang, Yihui & Yang, Lixing & Tang, Tao, 2021. "Timetable coordination in a rail transit network with time-dependent passenger demand," European Journal of Operational Research, Elsevier, vol. 295(1), pages 183-202.
    8. Gao, Ziyou & Wu, Jianjun & Sun, Huijun, 2005. "Solution algorithm for the bi-level discrete network design problem," Transportation Research Part B: Methodological, Elsevier, vol. 39(6), pages 479-495, July.
    9. Rinaldi, Marco & Picarelli, Erika & D'Ariano, Andrea & Viti, Francesco, 2020. "Mixed-fleet single-terminal bus scheduling problem: Modelling, solution scheme and potential applications," Omega, Elsevier, vol. 96(C).
    10. Hosseininasab, Seyyed-Mohammadreza & Shetab-Boushehri, Seyyed-Nader, 2015. "Integration of selecting and scheduling urban road construction projects as a time-dependent discrete network design problem," European Journal of Operational Research, Elsevier, vol. 246(3), pages 762-771.
    11. Cova, Thomas J. & Johnson, Justin P., 2003. "A network flow model for lane-based evacuation routing," Transportation Research Part A: Policy and Practice, Elsevier, vol. 37(7), pages 579-604, August.
    12. Bengio, Yoshua & Lodi, Andrea & Prouvost, Antoine, 2021. "Machine learning for combinatorial optimization: A methodological tour d’horizon," European Journal of Operational Research, Elsevier, vol. 290(2), pages 405-421.
    13. Poorzahedy, Hossain & Rouhani, Omid M., 2007. "Hybrid meta-heuristic algorithms for solving network design problem," European Journal of Operational Research, Elsevier, vol. 182(2), pages 578-596, October.
    14. Xu, Zhandong & Xie, Jun & Liu, Xiaobo & Nie, Yu (Marco), 2020. "Hyperpath-based algorithms for the transit equilibrium assignment problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 143(C).
    15. Marguerite Frank & Philip Wolfe, 1956. "An algorithm for quadratic programming," Naval Research Logistics Quarterly, John Wiley & Sons, vol. 3(1‐2), pages 95-110, March.
    16. Hosseininasab, Seyyed-Mohammadreza & Shetab-Boushehri, Seyyed-Nader & Hejazi, Seyed Reza & Karimi, Hadi, 2018. "A multi-objective integrated model for selecting, scheduling, and budgeting road construction projects," European Journal of Operational Research, Elsevier, vol. 271(1), pages 262-277.
    17. Qiang Zhang & Shi Qiang Liu & Mahmoud Masoud, 2022. "A traffic congestion analysis by user equilibrium and system optimum with incomplete information," Journal of Combinatorial Optimization, Springer, vol. 43(5), pages 1391-1404, July.
    18. Elnaz Miandoabchi & Farzaneh Daneshzand & Reza Zanjirani Farahani & Wai Yuen Szeto, 2015. "Time-dependent discrete road network design with both tactical and strategic decisions," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 66(6), pages 894-913, June.
    19. Yu, Hao & Ma, Rui & Zhang, H. Michael, 2018. "Optimal traffic signal control under dynamic user equilibrium and link constraints in a general network," Transportation Research Part B: Methodological, Elsevier, vol. 110(C), pages 302-325.
    20. Zeng, Lanyan & Liu, Shi Qiang & Kozan, Erhan & Corry, Paul & Masoud, Mahmoud, 2021. "A comprehensive interdisciplinary review of mine supply chain management," Resources Policy, Elsevier, vol. 74(C).
    21. Xiaozheng He & Hong Zheng & Srinivas Peeta & Yongfu Li, 2018. "Network Design Model to Integrate Shelter Assignment with Contraflow Operations in Emergency Evacuation Planning," Networks and Spatial Economics, Springer, vol. 18(4), pages 1027-1050, December.
    22. Easley,David & Kleinberg,Jon, 2010. "Networks, Crowds, and Markets," Cambridge Books, Cambridge University Press, number 9780521195331.
    23. Wang, Shuaian & Meng, Qiang & Yang, Hai, 2013. "Global optimization methods for the discrete network design problem," Transportation Research Part B: Methodological, Elsevier, vol. 50(C), pages 42-60.
    24. Bagloee, Saeed Asadi & (Avi) Ceder, Avishai & Sarvi, Majid & Asadi, Mohsen, 2019. "Is it time to go for no-car zone policies? Braess Paradox Detection," Transportation Research Part A: Policy and Practice, Elsevier, vol. 121(C), pages 251-264.
    25. Di, Zhen & Yang, Lixing, 2020. "Reversible lane network design for maximizing the coupling measure between demand structure and network structure," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 141(C).
    26. Hamid Farvaresh & Mohammad Sepehri, 2013. "A Branch and Bound Algorithm for Bi-level Discrete Network Design Problem," Networks and Spatial Economics, Springer, vol. 13(1), pages 67-106, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hosseininasab, Seyyed-Mohammadreza & Shetab-Boushehri, Seyyed-Nader & Hejazi, Seyed Reza & Karimi, Hadi, 2018. "A multi-objective integrated model for selecting, scheduling, and budgeting road construction projects," European Journal of Operational Research, Elsevier, vol. 271(1), pages 262-277.
    2. Tan, Zhijia & Yang, Hai & Tan, Wei & Li, Zhichun, 2016. "Pareto-improving transportation network design and ownership regimes," Transportation Research Part B: Methodological, Elsevier, vol. 91(C), pages 292-309.
    3. Pirmin Fontaine & Stefan Minner, 2017. "A dynamic discrete network design problem for maintenance planning in traffic networks," Annals of Operations Research, Springer, vol. 253(2), pages 757-772, June.
    4. Wang, Guangmin & Gao, Ziyou & Xu, Meng, 2019. "Integrating link-based discrete credit charging scheme into discrete network design problem," European Journal of Operational Research, Elsevier, vol. 272(1), pages 176-187.
    5. Hosseininasab, Seyyed-Mohammadreza & Shetab-Boushehri, Seyyed-Nader, 2015. "Integration of selecting and scheduling urban road construction projects as a time-dependent discrete network design problem," European Journal of Operational Research, Elsevier, vol. 246(3), pages 762-771.
    6. Miralinaghi, Mohammad & Seilabi, Sania E. & Chen, Sikai & Hsu, Yu-Ting & Labi, Samuel, 2020. "Optimizing the selection and scheduling of multi-class projects using a Stackelberg framework," European Journal of Operational Research, Elsevier, vol. 286(2), pages 508-522.
    7. Saeed Asadi Bagloee & Majid Sarvi & Avishai Ceder, 2017. "Transit priority lanes in the congested road networks," Public Transport, Springer, vol. 9(3), pages 571-599, October.
    8. Arash Kaviani & Russell G. Thompson & Abbas Rajabifard & Majid Sarvi, 2020. "A model for multi-class road network recovery scheduling of regional road networks," Transportation, Springer, vol. 47(1), pages 109-143, February.
    9. Mahmoudi, Reza & Shetab-Boushehri, Seyyed-Nader & Hejazi, Seyed Reza & Emrouznejad, Ali & Rajabi, Parisa, 2019. "A hybrid egalitarian bargaining game-DEA and sustainable network design approach for evaluating, selecting and scheduling urban road construction projects," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 130(C), pages 161-183.
    10. Khooban, Zohreh & Farahani, Reza Zanjirani & Miandoabchi, Elnaz & Szeto, W.Y., 2015. "Mixed network design using hybrid scatter search," European Journal of Operational Research, Elsevier, vol. 247(3), pages 699-710.
    11. Wang, Aihu & Tang, Yuanhua & Mohmand, Yasir Tariq & Xu, Pei, 2022. "Modifying link capacity to avoid Braess Paradox considering elastic demand," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 605(C).
    12. Fontaine, Pirmin & Minner, Stefan, 2014. "Benders Decomposition for Discrete–Continuous Linear Bilevel Problems with application to traffic network design," Transportation Research Part B: Methodological, Elsevier, vol. 70(C), pages 163-172.
    13. Liu, Jiangtao & Zhou, Xuesong, 2016. "Capacitated transit service network design with boundedly rational agents," Transportation Research Part B: Methodological, Elsevier, vol. 93(PA), pages 225-250.
    14. Xu, Zhandong & Chen, Anthony & Li, Guoyuan & Li, Zhengyang & Liu, Xiaobo, 2024. "Elastic-demand bi-criteria traffic assignment under the continuously distributed value of time: A two-stage gradient projection algorithm with graphical interpretations," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 183(C).
    15. Di, Zhen & Yang, Lixing & Qi, Jianguo & Gao, Ziyou, 2018. "Transportation network design for maximizing flow-based accessibility," Transportation Research Part B: Methodological, Elsevier, vol. 110(C), pages 209-238.
    16. Xiang Zhang & S. Travis Waller, 2019. "Implications of link-based equity objectives on transportation network design problem," Transportation, Springer, vol. 46(5), pages 1559-1589, October.
    17. Wang, Shuaian & Meng, Qiang & Yang, Hai, 2013. "Global optimization methods for the discrete network design problem," Transportation Research Part B: Methodological, Elsevier, vol. 50(C), pages 42-60.
    18. Marta Rojo, 2020. "Evaluation of Traffic Assignment Models through Simulation," Sustainability, MDPI, vol. 12(14), pages 1-19, July.
    19. Wang, David Z.W. & Liu, Haoxiang & Szeto, W.Y., 2015. "A novel discrete network design problem formulation and its global optimization solution algorithm," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 79(C), pages 213-230.
    20. Elnaz Miandoabchi & Reza Farahani & W. Szeto, 2012. "Bi-objective bimodal urban road network design using hybrid metaheuristics," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 20(4), pages 583-621, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:operea:v:23:y:2023:i:2:d:10.1007_s12351-023-00756-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.