IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v97y2019i3d10.1007_s11069-019-03672-7.html
   My bibliography  Save this article

Development of a generic concept to analyze the accessibility of emergency facilities in critical road infrastructure for disaster scenarios: exemplary application for the 2017 wildfires in Chile and Portugal

Author

Listed:
  • Johanna Guth

    (Karlsruhe Institute of Technology)

  • Sven Wursthorn

    (Karlsruhe Institute of Technology)

  • Andreas Ch. Braun

    (Karlsruhe Institute of Technology)

  • Sina Keller

    (Karlsruhe Institute of Technology)

Abstract

Natural hazards such as earthquakes, floods, or wildfires pose a serious threat to road infrastructure. Especially in emergency situations, the society depends on the road infrastructure to maintain its functionality in terms of evacuation and accessibility to emergency facilities. In this paper, we develop a generic, multi-scale concept to analyze the accessibility to emergency facilities in critical road infrastructure for natural disaster scenarios. We follow a modular approach: The basic module evaluates the accessibility of emergency facilities by calculating an accessibility index. Other modules enable the calculation of a grid-based index and the generation of a degraded network based on a natural disaster scenario. OpenStreetMap serves as a free-to-use and worldwide available database for the road network and the emergency facility location. The concept is applied exemplarily for two wildfire scenarios of different geographic scales: the January 2017 Wildfires in the BioBío and Maule region located in central Chile and the June 2017 Wildfires in central Portugal. An impact analysis of the wildfires on the accessibility of emergency facilities is performed and evaluated. As a result, the concept provides a valuable and data-sparse decision aid tool for regional planners and disaster control. It can be used in different stages of the disaster risk management cycle. In the mitigation and preparation phase, places with poor accessibility can be identified. In the short-term response phase after a disaster, the quick identification of critical and disconnected road network parts assists disaster control in planning a possible reaction strategy.

Suggested Citation

  • Johanna Guth & Sven Wursthorn & Andreas Ch. Braun & Sina Keller, 2019. "Development of a generic concept to analyze the accessibility of emergency facilities in critical road infrastructure for disaster scenarios: exemplary application for the 2017 wildfires in Chile and ," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 97(3), pages 979-999, July.
  • Handle: RePEc:spr:nathaz:v:97:y:2019:i:3:d:10.1007_s11069-019-03672-7
    DOI: 10.1007/s11069-019-03672-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-019-03672-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-019-03672-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Murawski, Lisa & Church, Richard L., 2009. "Improving accessibility to rural health services: The maximal covering network improvement problem," Socio-Economic Planning Sciences, Elsevier, vol. 43(2), pages 102-110, June.
    2. Evangelos Mitsakis & Iraklis Stamos & Anestis Papanikolaou & Georgia Aifadopoulou & Haris Kontoes, 2014. "Assessment of extreme weather events on transport networks: case study of the 2007 wildfires in Peloponnesus," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 72(1), pages 87-107, May.
    3. Sohn, Jungyul, 2006. "Evaluating the significance of highway network links under the flood damage: An accessibility approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 40(6), pages 491-506, July.
    4. Mohammad Mojtahedi & Sidney Newton & Jason Meding, 2017. "Predicting the resilience of transport infrastructure to a natural disaster using Cox’s proportional hazards regression model," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 85(2), pages 1119-1133, January.
    5. Berdica, Katja, 2002. "An introduction to road vulnerability: what has been done, is done and should be done," Transport Policy, Elsevier, vol. 9(2), pages 117-127, April.
    6. Sunarin Chanta & Maria Mayorga & Laura McLay, 2014. "Improving emergency service in rural areas: a bi-objective covering location model for EMS systems," Annals of Operations Research, Springer, vol. 221(1), pages 133-159, October.
    7. Zio, Enrico, 2016. "Challenges in the vulnerability and risk analysis of critical infrastructures," Reliability Engineering and System Safety, Elsevier, vol. 152(C), pages 137-150.
    8. Paramet Luathep & Agachai Sumalee & H. Ho & Fumitaka Kurauchi, 2011. "Large-scale road network vulnerability analysis: a sensitivity analysis based approach," Transportation, Springer, vol. 38(5), pages 799-817, September.
    9. Taylor, Michael A.P. & Susilawati,, 2012. "Remoteness and accessibility in the vulnerability analysis of regional road networks," Transportation Research Part A: Policy and Practice, Elsevier, vol. 46(5), pages 761-771.
    10. Mozumder, Pallab & Raheem, Nejem & Talberth, John & Berrens, Robert P., 2008. "Investigating intended evacuation from wildfires in the wildland-urban interface: Application of a bivariate probit model," Forest Policy and Economics, Elsevier, vol. 10(6), pages 415-423, August.
    11. Demirel, Hande & Kompil, Mert & Nemry, Françoise, 2015. "A framework to analyze the vulnerability of European road networks due to Sea-Level Rise (SLR) and sea storm surges," Transportation Research Part A: Policy and Practice, Elsevier, vol. 81(C), pages 62-76.
    12. Bono, Flavio & Gutiérrez, Eugenio, 2011. "A network-based analysis of the impact of structural damage on urban accessibility following a disaster: the case of the seismically damaged Port Au Prince and Carrefour urban road networks," Journal of Transport Geography, Elsevier, vol. 19(6), pages 1443-1455.
    13. Anthony Chen & Chao Yang & Sirisak Kongsomsaksakul & Ming Lee, 2007. "Network-based Accessibility Measures for Vulnerability Analysis of Degradable Transportation Networks," Networks and Spatial Economics, Springer, vol. 7(3), pages 241-256, September.
    14. Bruno F. Santos & António P. Antunes & Eric J. Miller, 2010. "Interurban road network planning model with accessibility and robustness objectives," Transportation Planning and Technology, Taylor & Francis Journals, vol. 33(3), pages 297-313, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rodríguez-Núñez, Eduardo & García-Palomares, Juan Carlos, 2014. "Measuring the vulnerability of public transport networks," Journal of Transport Geography, Elsevier, vol. 35(C), pages 50-63.
    2. Khademi, Navid & Babaei, Mohsen & Schmöcker, Jan-Dirk & Fani, Amirhossein, 2018. "Analysis of incident costs in a vulnerable sparse rail network – Description and Iran case study," Research in Transportation Economics, Elsevier, vol. 70(C), pages 9-27.
    3. Federico Rupi & Silvia Bernardi & Guido Rossi & Antonio Danesi, 2015. "The Evaluation of Road Network Vulnerability in Mountainous Areas: A Case Study," Networks and Spatial Economics, Springer, vol. 15(2), pages 397-411, June.
    4. Victor Cantillo & Luis F. Macea & Miguel Jaller, 2019. "Assessing Vulnerability of Transportation Networks for Disaster Response Operations," Networks and Spatial Economics, Springer, vol. 19(1), pages 243-273, March.
    5. Bell, Michael G.H. & Kurauchi, Fumitaka & Perera, Supun & Wong, Walter, 2017. "Investigating transport network vulnerability by capacity weighted spectral analysis," Transportation Research Part B: Methodological, Elsevier, vol. 99(C), pages 251-266.
    6. Freiria, Susana & Ribeiro, Bernardete & Tavares, Alexandre O., 2015. "Understanding road network dynamics: Link-based topological patterns," Journal of Transport Geography, Elsevier, vol. 46(C), pages 55-66.
    7. Li, Tao & Rong, Lili & Yan, Kesheng, 2019. "Vulnerability analysis and critical area identification of public transport system: A case of high-speed rail and air transport coupling system in China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 127(C), pages 55-70.
    8. Muriel-Villegas, Juan E. & Alvarez-Uribe, Karla C. & Patiño-Rodríguez, Carmen E. & Villegas, Juan G., 2016. "Analysis of transportation networks subject to natural hazards – Insights from a Colombian case," Reliability Engineering and System Safety, Elsevier, vol. 152(C), pages 151-165.
    9. Juan Carlos García-Palomares & Javier Gutiérrez & Juan Carlos Martín & Borja Moya-Gómez, 2018. "An analysis of the Spanish high capacity road network criticality," Transportation, Springer, vol. 45(4), pages 1139-1159, July.
    10. Almotahari, Amirmasoud & Yazici, Anil, 2021. "A computationally efficient metric for identification of critical links in large transportation networks," Reliability Engineering and System Safety, Elsevier, vol. 209(C).
    11. Demirel, Hande & Kompil, Mert & Nemry, Françoise, 2015. "A framework to analyze the vulnerability of European road networks due to Sea-Level Rise (SLR) and sea storm surges," Transportation Research Part A: Policy and Practice, Elsevier, vol. 81(C), pages 62-76.
    12. Xu, Xiangdong & Qu, Kai & Chen, Anthony & Yang, Chao, 2021. "A new day-to-day dynamic network vulnerability analysis approach with Weibit-based route adjustment process," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 153(C).
    13. Jenelius, Erik, 2010. "User inequity implications of road network vulnerability," The Journal of Transport and Land Use, Center for Transportation Studies, University of Minnesota, vol. 2(3), pages 57-73.
    14. Mohamad Darayi & Kash Barker & Joost R. Santos, 2017. "Component Importance Measures for Multi-Industry Vulnerability of a Freight Transportation Network," Networks and Spatial Economics, Springer, vol. 17(4), pages 1111-1136, December.
    15. Jenelius, Erik & Mattsson, Lars-Göran, 2012. "Road network vulnerability analysis of area-covering disruptions: A grid-based approach with case study," Transportation Research Part A: Policy and Practice, Elsevier, vol. 46(5), pages 746-760.
    16. Sugiura, Satoshi & Chen, Anthony, 2021. "Vulnerability analysis of cut-capacity structure and OD demand using Gomory-Hu tree method," Transportation Research Part B: Methodological, Elsevier, vol. 153(C), pages 111-127.
    17. Amir Al Hamdi Redzuan & Rozana Zakaria & Aznah Nor Anuar & Eeydzah Aminudin & Norbazlan Mohd Yusof, 2022. "Road Network Vulnerability Based on Diversion Routes to Reconnect Disrupted Road Segments," Sustainability, MDPI, vol. 14(4), pages 1-22, February.
    18. Gu, Yu & Chen, Anthony & Xu, Xiangdong, 2023. "Measurement and ranking of important link combinations in the analysis of transportation network vulnerability envelope buffers under multiple-link disruptions," Transportation Research Part B: Methodological, Elsevier, vol. 167(C), pages 118-144.
    19. Jenelius, Erik, 2009. "Network structure and travel patterns: explaining the geographical disparities of road network vulnerability," Journal of Transport Geography, Elsevier, vol. 17(3), pages 234-244.
    20. Xu, Xiangdong & Chen, Anthony & Jansuwan, Sarawut & Yang, Chao & Ryu, Seungkyu, 2018. "Transportation network redundancy: Complementary measures and computational methods," Transportation Research Part B: Methodological, Elsevier, vol. 114(C), pages 68-85.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:97:y:2019:i:3:d:10.1007_s11069-019-03672-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.