IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v91y2018i3d10.1007_s11069-018-3185-3.html
   My bibliography  Save this article

Effects of particle size of mono-disperse granular flows impacting a rigid barrier

Author

Listed:
  • Yifei Cui

    (Hong Kong University of Science and Technology)

  • Clarence E. Choi

    (Hong Kong University of Science and Technology
    The HKUST Jockey Club Institute for Advanced Study)

  • Luis H. D. Liu

    (Hong Kong University of Science and Technology)

  • Charles W. W. Ng

    (Hong Kong University of Science and Technology)

Abstract

Understanding the interaction between complex geophysical flows and barriers remains a critical challenge for protecting infrastructure in mountainous regions. The scientific challenge lies in understanding how grain stresses in complex geophysical flows become manifested in the dynamic response of a rigid barrier. A series of physical flume tests were conducted to investigate the influence of varying the particle diameter of mono-dispersed flows on the impact kinematics of a model rigid barrier. Particle sizes of 3, 10, 23 and 38 mm were investigated. Physical tests results were then used to calibrate a discrete element model for carrying out numerical back-analyses. Results reveal that aside from considering bulk characteristics of the flow, such as the average velocity and bulk density, the impact load strongly depends on the particle size. The particle size influences the degree of grain inertial stresses which become manifested as sharp impulses in the dynamic response of a rigid barrier. Impact models that only consider a single impulse using the equation of elastic collision warrant caution as a cluster of coarse grains induce numerous impulses that can exceed current design recommendations by several orders of magnitude. Although these impulses are transient, they may induce local strucutral damage. Furthermore, the equation of elastic collision should be adopted when the normalized particle size with the flow depth, δ/h, is larger than 0.9 for Froude numbers less than 3.5.

Suggested Citation

  • Yifei Cui & Clarence E. Choi & Luis H. D. Liu & Charles W. W. Ng, 2018. "Effects of particle size of mono-disperse granular flows impacting a rigid barrier," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 91(3), pages 1179-1201, April.
  • Handle: RePEc:spr:nathaz:v:91:y:2018:i:3:d:10.1007_s11069-018-3185-3
    DOI: 10.1007/s11069-018-3185-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-018-3185-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-018-3185-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Morgane Brunet & Laurent Moretti & Anne Friant & Anne Mangeney & Enrique Domingo Fernández Nieto & Francois Bouchut, 2017. "Numerical simulation of the 30–45 ka debris avalanche flow of Montagne Pelée volcano, Martinique: from volcano flank collapse to submarine emplacement," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 87(2), pages 1189-1222, June.
    2. D. Kanungo & Anindya Pain & Shaifaly Sharma, 2013. "Finite element modeling approach to assess the stability of debris and rock slopes: a case study from the Indian Himalayas," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 69(1), pages 1-24, October.
    3. Der-Guey Lin & Sen-Yen Hsu & Kuang-Tsung Chang, 2009. "Numerical simulations of flow motion and deposition characteristics of granular debris flows," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 50(3), pages 623-650, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Thomas Heinze, 2020. "A highly flexible laboratory setup to demonstrate granular flow characteristics," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 104(2), pages 1581-1596, November.
    2. Xinpo Li & Jun Yao & Yulian Sun & Yong Wu, 2022. "Material point method analysis of fluid–structure interaction in geohazards," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 114(3), pages 3425-3443, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tariq Siddique & M. E. A. Mondal & S. P. Pradhan & M. Salman & M. Sohel, 2020. "Geotechnical assessment of cut slopes in the landslide-prone Himalayas: rock mass characterization and simulation approach," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 104(1), pages 413-435, October.
    2. Shakti Suman & S. Z. Khan & S. K. Das & S. K. Chand, 2016. "Slope stability analysis using artificial intelligence techniques," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 84(2), pages 727-748, November.
    3. Badri Shrestha & Hajime Nakagawa & Kenji Kawaike & Yasuyuki Baba & Hao Zhang, 2012. "Driftwood deposition from debris flows at slit-check dams and fans," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 61(2), pages 577-602, March.
    4. Bankim Mahanta & H. O. Singh & P. K. Singh & Ashutosh Kainthola & T. N. Singh, 2016. "Stability analysis of potential failure zones along NH-305, India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 83(3), pages 1341-1357, September.
    5. Tümay Kadakci Koca, 2023. "The Effect of Geometrical Features of Release Surfaces on the Stability of Tectonically Disturbed Deep Rock Slopes in an Albite Open Pit Mine," Sustainability, MDPI, vol. 15(2), pages 1-23, January.
    6. Muhammad Khairi A.Wahab & Mohd Remy Rozainy Mohd Arif Zainol & Jazaul Ikhsan & Mohd Hafiz Zawawi & Mohamad Aizat Abas & Norazian Mohamed Noor & Norizham Abdul Razak & Moh Sholichin, 2023. "Assessment of Debris Flow Impact Based on Experimental Analysis along a Deposition Area," Sustainability, MDPI, vol. 15(17), pages 1-20, August.
    7. Ratan Das & Parag Phukon & T. N. Singh, 2022. "Understanding the cause and effect relationship of debris slides in Papum Pare district, Arunachal Himalaya, India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 110(3), pages 1735-1760, February.
    8. Vipin Kumar & Vikram Gupta & Imlirenla Jamir, 2018. "Hazard evaluation of progressive Pawari landslide zone, Satluj valley, Himachal Pradesh, India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 93(2), pages 1029-1047, September.
    9. Arunava Ray & R. E. S. Chaitanya Kumar & Rajesh Rai & Suprakash Gupta, 2020. "Risk chart for identification of potential landslide due to the presence of residual soil," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 103(3), pages 3479-3498, September.
    10. T. Siddque & S. P. Pradhan, 2018. "Stability and sensitivity analysis of Himalayan road cut debris slopes: an investigation along NH-58, India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 93(2), pages 577-600, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:91:y:2018:i:3:d:10.1007_s11069-018-3185-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.