IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v69y2013i1p1-24.html
   My bibliography  Save this article

Finite element modeling approach to assess the stability of debris and rock slopes: a case study from the Indian Himalayas

Author

Listed:
  • D. Kanungo
  • Anindya Pain
  • Shaifaly Sharma

Abstract

Landslides and slope failures are recurrent phenomena in the Indian Himalayas. The study area comprises the hill slopes along a road stretch of 1.5 km at a distance of 9 km from Pipalkoti on Chamoli–Badrinath highway (NH-58) in the Garhwal Himalayas, India. Based on the field survey, contour map, and the hillshade, the study area has been divided into different zones. Three different zones/slopes in this study area including one potential debris slide, one stable debris slope, and one potential rock slide have been undertaken for investigation and modeling. Field mapping, data collection related to slope features and soil/rock sample collection, and discontinuity mapping for all the slopes have been carried out in field. Soil samples have been tested in the laboratory to determine the physico-mechanical properties. These properties along with some material properties from the literature have been used as input parameters for the numerical simulation. To investigate the failure process in the debris/rock slides as well as stable debris slope, the slopes were modeled as a continuum using 2D finite element plain strain approach. Shear strength reduction analysis was performed to determine the critical strength reduction factor. The computed deformations and the stress distributions, along the failure surface, have been compared with the field observations and found to be in good agreement. The analysis results indicated rock/debris slide slopes to be highly unstable. The debris slide modeling depicted failures both above and below road levels as observed in field. The rock slide modeling could depict the exact pattern of failure involving 3 sets of discontinuities simultaneously as observed in real-field scenario which is a major limitation in case of limit equilibrium analysis. The field-observed stable slope comes to be stable through FE analysis also. Based on these analyses, landslide hazard assessment of the study area could be done. Copyright Springer Science+Business Media Dordrecht 2013

Suggested Citation

  • D. Kanungo & Anindya Pain & Shaifaly Sharma, 2013. "Finite element modeling approach to assess the stability of debris and rock slopes: a case study from the Indian Himalayas," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 69(1), pages 1-24, October.
  • Handle: RePEc:spr:nathaz:v:69:y:2013:i:1:p:1-24
    DOI: 10.1007/s11069-013-0680-4
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11069-013-0680-4
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11069-013-0680-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yifei Cui & Clarence E. Choi & Luis H. D. Liu & Charles W. W. Ng, 2018. "Effects of particle size of mono-disperse granular flows impacting a rigid barrier," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 91(3), pages 1179-1201, April.
    2. Tümay Kadakci Koca, 2023. "The Effect of Geometrical Features of Release Surfaces on the Stability of Tectonically Disturbed Deep Rock Slopes in an Albite Open Pit Mine," Sustainability, MDPI, vol. 15(2), pages 1-23, January.
    3. T. Siddque & S. P. Pradhan, 2018. "Stability and sensitivity analysis of Himalayan road cut debris slopes: an investigation along NH-58, India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 93(2), pages 577-600, September.
    4. Shakti Suman & S. Z. Khan & S. K. Das & S. K. Chand, 2016. "Slope stability analysis using artificial intelligence techniques," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 84(2), pages 727-748, November.
    5. Arunava Ray & R. E. S. Chaitanya Kumar & Rajesh Rai & Suprakash Gupta, 2020. "Risk chart for identification of potential landslide due to the presence of residual soil," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 103(3), pages 3479-3498, September.
    6. Vipin Kumar & Vikram Gupta & Imlirenla Jamir, 2018. "Hazard evaluation of progressive Pawari landslide zone, Satluj valley, Himachal Pradesh, India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 93(2), pages 1029-1047, September.
    7. Tariq Siddique & M. E. A. Mondal & S. P. Pradhan & M. Salman & M. Sohel, 2020. "Geotechnical assessment of cut slopes in the landslide-prone Himalayas: rock mass characterization and simulation approach," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 104(1), pages 413-435, October.
    8. Ratan Das & Parag Phukon & T. N. Singh, 2022. "Understanding the cause and effect relationship of debris slides in Papum Pare district, Arunachal Himalaya, India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 110(3), pages 1735-1760, February.
    9. Bankim Mahanta & H. O. Singh & P. K. Singh & Ashutosh Kainthola & T. N. Singh, 2016. "Stability analysis of potential failure zones along NH-305, India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 83(3), pages 1341-1357, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:69:y:2013:i:1:p:1-24. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.