IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v91y2018i3d10.1007_s11069-017-3160-4.html
   My bibliography  Save this article

Heat wave risk assessment and mapping in urban areas: case study for a midsized Central European city, Novi Sad (Serbia)

Author

Listed:
  • Stevan Savić

    (University of Novi Sad)

  • Vladimir Marković

    (University of Novi Sad)

  • Ivan Šećerov

    (University of Novi Sad)

  • Dragoslav Pavić

    (University of Novi Sad)

  • Daniela Arsenović

    (University of Novi Sad)

  • Dragan Milošević

    (University of Novi Sad)

  • Dragan Dolinaj

    (University of Novi Sad)

  • Imre Nagy

    (University of Novi Sad)

  • Milana Pantelić

    (University of Novi Sad)

Abstract

Risk assessment and mapping methodologies for heat waves as frequently occurring hazards in central and southeastern Europe were applied in this study, and the impact of heat waves on the mortality of urban populations was determined as part of the assessment. The methodology for conducting the heat wave risk assessment is based on European Commission’s Guidelines for Risk Assessment and Mapping. The Novi Sad (Serbia) urban area was studied during summer 2015, which was one of the hottest summers in the last few decades. In situ air temperature measurements from urban stations and mortality of urban populations were used. Nocturnal urban heat island (UHI) intensity values between the various built-up zones and natural surrounding areas were used for the hazard level calculation. Temperature data from 9 p.m. to 5 a.m. were used because during the night, the UHI intensity reached its maximum values. The average daily number of deaths by LCZs was used to define the impact level of the vulnerability index. Calculations for both hazard levels were completed during two intensive heat waves (in July and August 2015) when it was expected that there may be a high level of risk. The results and maps show that the urban area is complex, and the heat wave risk on the population is not uniform. The most densely built-up areas (LCZs 2, 5 and 6) have very high or high risk values that are influenced by a higher rate of mortality. The obtained results and maps can be used by local authorities to prevent and mitigate climate-related hazards, for medical institutions as well as urban planners and for ancillary local, regional or national services. According to these results, the local authorities could define hot spots where they can place medical and rescue teams and install points with water supplies, etc.

Suggested Citation

  • Stevan Savić & Vladimir Marković & Ivan Šećerov & Dragoslav Pavić & Daniela Arsenović & Dragan Milošević & Dragan Dolinaj & Imre Nagy & Milana Pantelić, 2018. "Heat wave risk assessment and mapping in urban areas: case study for a midsized Central European city, Novi Sad (Serbia)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 91(3), pages 891-911, April.
  • Handle: RePEc:spr:nathaz:v:91:y:2018:i:3:d:10.1007_s11069-017-3160-4
    DOI: 10.1007/s11069-017-3160-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-017-3160-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-017-3160-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Stevan Savić & Aleksandar Selakov & Dragan Milošević, 2014. "Cold and warm air temperature spells during the winter and summer seasons and their impact on energy consumption in urban areas," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 73(2), pages 373-387, September.
    2. Vladimir Marković & Imre Nagy & Andras Sik & Kinga Perge & Peter Laszlo & Maria Papathoma-Köhle & Catrin Promper & Thomas Glade, 2016. "Assessing drought and drought-related wildfire risk in Kanjiza, Serbia: the SEERISK methodology," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 80(2), pages 709-726, January.
    3. A. Lemonsu & Vincent Viguie & M. Daniel & V. Masson, 2015. "Vulnerability to heat waves: Impact of urban expansion scenarios on urban heat island and heat stress in Paris (France)," Post-Print hal-01695088, HAL.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yaping Chen & Bohong Zheng & Yinze Hu, 2020. "Numerical Simulation of Local Climate Zone Cooling Achieved through Modification of Trees, Albedo and Green Roofs—A Case Study of Changsha, China," Sustainability, MDPI, vol. 12(7), pages 1-23, April.
    2. Wei Wu & Qingsheng Liu & He Li & Chong Huang, 2023. "Spatiotemporal Distribution of Heatwave Hazards in the Chinese Mainland for the Period 1990–2019," IJERPH, MDPI, vol. 20(2), pages 1-23, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yan Yan & Hui Liu & Ningcheng Wang & Shenjun Yao, 2021. "How Does Low-Density Urbanization Reduce the Financial Sustainability of Chinese Cities? A Debt Perspective," Land, MDPI, vol. 10(9), pages 1-18, September.
    2. Rakin Abrar & Showmitra Kumar Sarkar & Kashfia Tasnim Nishtha & Swapan Talukdar & Shahfahad & Atiqur Rahman & Abu Reza Md Towfiqul Islam & Amir Mosavi, 2022. "Assessing the Spatial Mapping of Heat Vulnerability under Urban Heat Island (UHI) Effect in the Dhaka Metropolitan Area," Sustainability, MDPI, vol. 14(9), pages 1-24, April.
    3. Kamruzzaman, Md. & Deilami, Kaveh & Yigitcanlar, Tan, 2018. "Investigating the urban heat island effect of transit oriented development in Brisbane," Journal of Transport Geography, Elsevier, vol. 66(C), pages 116-124.
    4. repec:ags:aaea16:235739 is not listed on IDEAS
    5. Kim, Hyungkyoo & Jung, Yoonhee & Oh, Jae In, 2019. "Transformation of urban heat island in the three-center city of Seoul, South Korea: The role of master plans," Land Use Policy, Elsevier, vol. 86(C), pages 328-338.
    6. Kohler, M. & Blond, N. & Clappier, A., 2016. "A city scale degree-day method to assess building space heating energy demands in Strasbourg Eurometropolis (France)," Applied Energy, Elsevier, vol. 184(C), pages 40-54.
    7. Lee, Gi-Eu, 2016. "Temperature Effects are more Complex than Degrees: A Case Study on Residential Energy Consumption," 2016 Annual Meeting, July 31-August 2, Boston, Massachusetts 242285, Agricultural and Applied Economics Association.
    8. Madi Kaboré & Emmanuel Bozonnet & Patrick Salagnac, 2020. "Building and Urban Cooling Performance Indexes of Wetted and Green Roofs—A Case Study under Current and Future Climates," Energies, MDPI, vol. 13(23), pages 1-16, November.
    9. Giuseppe T. Cirella & Alessio Russo & Federico Benassi & Ernest Czermański & Anatoliy G. Goncharuk & Aneta Oniszczuk-Jastrzabek, 2021. "Energy Re-Shift for an Urbanizing World," Energies, MDPI, vol. 14(17), pages 1-22, September.
    10. Tamara Lukić & Jelena Dunjić & Bojan Đerčan & Ivana Penjišević & Saša Milosavljević & Milka Bubalo-Živković & Milica Solarević, 2018. "Local Resilience to Natural Hazards in Serbia. Case Study: The West Morava River Valley," Sustainability, MDPI, vol. 10(8), pages 1-16, August.
    11. Yasi Tian & Lei Wang, 2020. "The Effect of Urban-Suburban Interaction on Urbanization and Suburban Ecological Security: A Case Study of Suburban Wuhan, Central China," Sustainability, MDPI, vol. 12(4), pages 1-22, February.
    12. Yanxu Liu & Shuangshuang Li & Yanglin Wang & Tian Zhang & Jian Peng & Tianyi Li, 2015. "Identification of multiple climatic extremes in metropolis: a comparison of Guangzhou and Shenzhen, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 79(2), pages 939-953, November.
    13. Flores-Larsen, S. & Bre, F. & Hongn, M., 2022. "A performance-based method to detect and characterize heatwaves for building resilience analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    14. Alessio Mastrucci & Edward Byers & Shonali Pachauri & Narasimha Rao & Bas Ruijven, 2022. "Cooling access and energy requirements for adaptation to heat stress in megacities," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 27(8), pages 1-16, December.
    15. Hyoji Choi & Jonghyun Kim & Donghyeon Yu & Bogang Jun, 2024. "Population Concentration in High-Complexity Regions within City during the heat wave," Papers 2407.09795, arXiv.org.
    16. Doljak, Dejan & Stanojević, Gorica, 2017. "Evaluation of natural conditions for site selection of ground-mounted photovoltaic power plants in Serbia," Energy, Elsevier, vol. 127(C), pages 291-300.
    17. Julia Kurek & Justyna Martyniuk-Pęczek, 2021. "Exploring DAD and ADD Methods for Dealing with Urban Heat Island Effect," Sustainability, MDPI, vol. 13(17), pages 1-14, August.
    18. Celemin Juan Pablo & Arias Maria Eugenia, 2022. "Relationship between densification and NDVI loss. A study using the Google Earth Engine at local scale," Environmental & Socio-economic Studies, Sciendo, vol. 10(3), pages 33-42, September.
    19. Karol Przeździecki & Jarosław Zawadzki, 2023. "Impact of the Variability of Vegetation, Soil Moisture, and Building Density between City Districts on Land Surface Temperature, Warsaw, Poland," Sustainability, MDPI, vol. 15(2), pages 1-14, January.
    20. Chiatti, Chiara & Kousis, Ioannis & Fabiani, Claudia & Pisello, Anna Laura, 2022. "Effect of optimized photoluminescence on luminous and passive cooling potential: A new combined experimental and numerical approach applied to yellow-emitting glass tiles," Renewable Energy, Elsevier, vol. 196(C), pages 28-39.
    21. Alireza Dehghani & Mehdi Alidadi & Ayyoob Sharifi, 2022. "Compact Development Policy and Urban Resilience: A Critical Review," Sustainability, MDPI, vol. 14(19), pages 1-19, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:91:y:2018:i:3:d:10.1007_s11069-017-3160-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.