IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i7p2752-d339640.html
   My bibliography  Save this article

Numerical Simulation of Local Climate Zone Cooling Achieved through Modification of Trees, Albedo and Green Roofs—A Case Study of Changsha, China

Author

Listed:
  • Yaping Chen

    (Architecture and Art School, Central South University, Changsha 410075, China)

  • Bohong Zheng

    (Architecture and Art School, Central South University, Changsha 410075, China)

  • Yinze Hu

    (Business School, Hunan University, Changsha 410082, China)

Abstract

By exploring the cooling potential of tree quantity, ground albedo, green roofs and their combinations in local climate zone (LCZ)-4, LCZ-5, and LCZ-6, this study focuses on the optimum cooling level that can be achieved in open residential regions in Changsha. It designs and models 39 scenarios by integrating in situ measurement and ENVI-met numerical simulation and further compares cooling effects of various combinations of the cooling factors. The results show that (1) an increased number of trees and higher albedo are more effective compared to green roofs in reducing summer potential temperatures at street level (2 m high) in three LCZs. Negative correlations are observed in the pedestrian air temperature with trees and ground albedo; (2) the effects of cooling factors vary among different LCZ classes, with the increased 60% more trees leading to lower outdoor temperatures for LCZ-4 (0.28 °C), LCZ-5 (0.39 °C), and LCZ-6 (0.54 °C), while higher albedo of asphalt surface (increased by 0.4) is more effective in LCZ-4 (reaches to 0.68 °C) 14:00, compare to LCZ-5 (0.49 °C) and LCZ-6 (0.38 °C); (3) applying combined cooling methods can provoke air temperature reduction (up to 0.96 °C), especially when higher levels of tree quantities (increased by 60%) are coupled with cool ground materials (albedo increased by 0.4). The results can contribute useful information for improving thermal environment in existing residential regions and future residential planning.

Suggested Citation

  • Yaping Chen & Bohong Zheng & Yinze Hu, 2020. "Numerical Simulation of Local Climate Zone Cooling Achieved through Modification of Trees, Albedo and Green Roofs—A Case Study of Changsha, China," Sustainability, MDPI, vol. 12(7), pages 1-23, April.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:7:p:2752-:d:339640
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/7/2752/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/7/2752/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Stevan Savić & Vladimir Marković & Ivan Šećerov & Dragoslav Pavić & Daniela Arsenović & Dragan Milošević & Dragan Dolinaj & Imre Nagy & Milana Pantelić, 2018. "Heat wave risk assessment and mapping in urban areas: case study for a midsized Central European city, Novi Sad (Serbia)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 91(3), pages 891-911, April.
    2. Santamouris, M., 2013. "Using cool pavements as a mitigation strategy to fight urban heat island—A review of the actual developments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 224-240.
    3. Qin, Yinghong, 2015. "A review on the development of cool pavements to mitigate urban heat island effect," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 445-459.
    4. Wang, Zhi-Hua & Zhao, Xiaoxi & Yang, Jiachuan & Song, Jiyun, 2016. "Cooling and energy saving potentials of shade trees and urban lawns in a desert city," Applied Energy, Elsevier, vol. 161(C), pages 437-444.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Miguel Núñez-Peiró & Anna Mavrogianni & Phil Symonds & Carmen Sánchez-Guevara Sánchez & F. Javier Neila González, 2021. "Modelling Long-Term Urban Temperatures with Less Training Data: A Comparative Study Using Neural Networks in the City of Madrid," Sustainability, MDPI, vol. 13(15), pages 1-23, July.
    2. Chien-Chiao Chao & Kuo-An Hung & Szu-Yuan Chen & Feng-Yi Lin & Tzu-Ping Lin, 2021. "Application of a High-Density Temperature Measurement System for the Management of the Kaohsiung House Project," Sustainability, MDPI, vol. 13(2), pages 1-16, January.
    3. Jiang Li & Qiao Pan & You Peng & Tao Feng & Shaobo Liu & Xiaoxi Cai & Chixing Zhong & Yicheng Yin & Wenbo Lai, 2020. "Perceived Quality of Urban Wetland Parks: A Second-Order Factor Structure Equation Modeling," Sustainability, MDPI, vol. 12(17), pages 1-15, September.
    4. Guilhardo Barros Moreira de Carvalho & Luiz Bueno da Silva, 2024. "The microclimate implications of urban form applying computer simulation: systematic literature review," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(10), pages 24687-24726, October.
    5. Gabriele Battista & Luca Evangelisti & Claudia Guattari & Emanuele De Lieto Vollaro & Roberto De Lieto Vollaro & Francesco Asdrubali, 2020. "Urban Heat Island Mitigation Strategies: Experimental and Numerical Analysis of a University Campus in Rome (Italy)," Sustainability, MDPI, vol. 12(19), pages 1-18, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Chenghao & Wang, Zhi-Hua & Kaloush, Kamil E. & Shacat, Joseph, 2021. "Cool pavements for urban heat island mitigation: A synthetic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    2. Jamshidi, Ali & Kurumisawa, Kiyofumi & Nawa, Toyoharu & Igarashi, Toshifumi, 2016. "Performance of pavements incorporating waste glass: The current state of the art," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 211-236.
    3. Ning Li & Yuxiang Tian & Biao Ma & Dongxia Hu, 2022. "Experimental Investigation of Water-Retaining and Mechanical Behaviors of Unbound Granular Materials under Infiltration," Sustainability, MDPI, vol. 14(3), pages 1-17, January.
    4. Renato Soares & Helena Corvacho & Fernando Alves, 2021. "Summer Thermal Conditions in Outdoor Public Spaces: A Case Study in a Mediterranean Climate," Sustainability, MDPI, vol. 13(10), pages 1-26, May.
    5. Karol Bandurski & Hanna Bandurska & Ewa Kazimierczak-Grygiel & Halina Koczyk, 2020. "The Green Structure for Outdoor Places in Dry, Hot Regions and Seasons—Providing Human Thermal Comfort in Sustainable Cities," Energies, MDPI, vol. 13(11), pages 1-24, June.
    6. Ulpiani, Giulia, 2019. "Water mist spray for outdoor cooling: A systematic review of technologies, methods and impacts," Applied Energy, Elsevier, vol. 254(C).
    7. Charlesworth, S.M. & Faraj-Llyod, A.S. & Coupe, S.J., 2017. "Renewable energy combined with sustainable drainage: Ground source heat and pervious paving," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 912-919.
    8. Xu, Ling & Wang, Jiayu & Xiao, Feipeng & EI-Badawy, Sherif & Awed, Ahmed, 2021. "Potential strategies to mitigate the heat island impacts of highway pavement on megacities with considerations of energy uses," Applied Energy, Elsevier, vol. 281(C).
    9. Stella Tsoka & Katerina Tsikaloudaki & Theodoros Theodosiou, 2019. "Coupling a Building Energy Simulation Tool with a Microclimate Model to Assess the Impact of Cool Pavements on the Building’s Energy Performance Application in a Dense Residential Area," Sustainability, MDPI, vol. 11(9), pages 1-16, April.
    10. Dai, Jiasheng & Ma, Feng & Fu, Zhen & Li, Chen & Jia, Meng & Shi, Ke & Wen, Yalu & Wang, Wentong, 2021. "Applicability assessment of stearic acid/palmitic acid binary eutectic phase change material in cooling pavement," Renewable Energy, Elsevier, vol. 175(C), pages 748-759.
    11. Kolbe, Karin, 2019. "Mitigating urban heat island effect and carbon dioxide emissions through different mobility concepts: Comparison of conventional vehicles with electric vehicles, hydrogen vehicles and public transport," Transport Policy, Elsevier, vol. 80(C), pages 1-11.
    12. Stella Tsoka & Katerina Tsikaloudaki & Theodoros Theodosiou & Dimitrios Bikas, 2020. "Urban Warming and Cities’ Microclimates: Investigation Methods and Mitigation Strategies—A Review," Energies, MDPI, vol. 13(6), pages 1-25, March.
    13. Liu Tian & Yongcai Li & Jun Lu & Jue Wang, 2021. "Review on Urban Heat Island in China: Methods, Its Impact on Buildings Energy Demand and Mitigation Strategies," Sustainability, MDPI, vol. 13(2), pages 1-31, January.
    14. Sushobhan Sen & Jeffery Roesler & Benjamin Ruddell & Ariane Middel, 2019. "Cool Pavement Strategies for Urban Heat Island Mitigation in Suburban Phoenix, Arizona," Sustainability, MDPI, vol. 11(16), pages 1-21, August.
    15. Bechara Haddad & Hamzé Karaky & Mohamed Boutouil & Bertrand Boudart & Nassim Sebaibi, 2023. "Investigation Properties of Pervious and Water-Retaining Recycled Concrete to Mitigate Urban Heat Island Phenomena," Sustainability, MDPI, vol. 15(6), pages 1-22, March.
    16. Manh, Tran Dinh & Jafaryar, M. & Hamad, Samir Mustafa & Barzinjy, Azeez A. & Shafee, Ahmad & Abohamzeh, Elham & Tlili, Iskander, 2020. "Nanoparticles hydrothermal simulation in a pipe with insertion of compound turbulator analyzing entropy generation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 542(C).
    17. Qin, Yinghong, 2015. "A review on the development of cool pavements to mitigate urban heat island effect," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 445-459.
    18. Jaykumar Joshi & Akhilesh Magal & Vijay S. Limaye & Prima Madan & Anjali Jaiswal & Dileep Mavalankar & Kim Knowlton, 2022. "Climate change and 2030 cooling demand in Ahmedabad, India: opportunities for expansion of renewable energy and cool roofs," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 27(7), pages 1-17, October.
    19. Manh, Tran Dinh & Tlili, I. & Shafee, Ahmad & Nguyen-Thoi, Trung & Hamouda, Hassen, 2020. "Modeling of hybrid nanofluid behavior within a permeable media involving buoyancy effect," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 554(C).
    20. Bonggeun Song & Kyunghun Park, 2019. "Analysis of Spatiotemporal Urban Temperature Characteristics by Urban Spatial Patterns in Changwon City, South Korea," Sustainability, MDPI, vol. 11(14), pages 1-21, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:7:p:2752-:d:339640. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.