IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v88y2017i2d10.1007_s11069-017-2889-0.html
   My bibliography  Save this article

Early flood warning in the Itajaí-Açu River basin using numerical weather forecasting and hydrological modeling

Author

Listed:
  • Leandro Casagrande

    (Center of Earth System Science – CCST/INPE. Av. dos Astronautas)

  • Javier Tomasella

    (Center of Earth System Science – CCST/INPE. Av. dos Astronautas)

  • Regina Célia Santos Alvalá

    (National Center for Monitoring and Early Warning of Natural Disasters – CEMADEN. Estrada Doutor Altino Bondesan)

  • Marcus Jorge Bottino

    (National Center for Monitoring and Early Warning of Natural Disasters – CEMADEN. Estrada Doutor Altino Bondesan)

  • Rochane Oliveira Caram

    (National Center for Monitoring and Early Warning of Natural Disasters – CEMADEN. Estrada Doutor Altino Bondesan)

Abstract

In recent decades, population growth associated with unplanned urban occupation has increased the vulnerability of the Brazilian population to natural disasters. In susceptible regions, early flood forecasting is essential for risk management. Still, in Brazil, most flood forecast and warning systems are based either on simplified models of flood wave propagation through the drainage network or on stochastic models. This paper presents a methodology for flood forecasting aiming to an operational warning system that proposes to increase the lead time of a warning through the use of an ensemble of meteorological forecasts. The chosen configuration was chosen so it would be feasible for an operational flood forecast and risk management. The methodology was applied to the flood forecast for the Itajaí-Açu River basin, a region which comprises a drainage area of approximately 15,500 km2 in the state of Santa Catarina, Brazil, historically affected by floods. Ensemble weather forecasts were used as input to the MHD-INPE hydrological model, and the performance of the methodology was assessed through statistical indicators. Results suggest that flood warnings can be issued up to 48 h in advance, with a low rate of false warnings. Streamflow forecasting through the use of hydrological ensemble prediction systems is still scarce in Brazil. To the best of our knowledge, this is the first time this methodology aiming to an operational flood risk management system has been tested in Brazil.

Suggested Citation

  • Leandro Casagrande & Javier Tomasella & Regina Célia Santos Alvalá & Marcus Jorge Bottino & Rochane Oliveira Caram, 2017. "Early flood warning in the Itajaí-Açu River basin using numerical weather forecasting and hydrological modeling," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 88(2), pages 741-757, September.
  • Handle: RePEc:spr:nathaz:v:88:y:2017:i:2:d:10.1007_s11069-017-2889-0
    DOI: 10.1007/s11069-017-2889-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-017-2889-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-017-2889-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. F. Daupras & J. Antoine & S. Becerra & A. Peltier, 2015. "Analysis of the robustness of the French flood warning system: a study based on the 2009 flood of the Garonne River," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 75(1), pages 215-241, January.
    2. Hans Romang & Massimiliano Zappa & Nadine Hilker & Matthias Gerber & François Dufour & Valérie Frede & Dominique Bérod & Matthias Oplatka & Christoph Hegg & Jakob Rhyner, 2011. "IFKIS-Hydro: an early warning and information system for floods and debris flows," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 56(2), pages 509-527, February.
    3. A. Fernández Bou & R. Sá & M. Cataldi, 2015. "Flood forecasting in the upper Uruguay River basin," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 79(2), pages 1239-1256, November.
    4. J. Júnior & J. Tomasella & D. Rodriguez, 2015. "Impacts of future climatic and land cover changes on the hydrological regime of the Madeira River basin," Climatic Change, Springer, vol. 129(1), pages 117-129, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Marianna Rodrigues Gullo Cavalcante & Priscila Luz Barcellos & Marcio Cataldi, 2020. "Flash flood in the mountainous region of Rio de Janeiro state (Brazil) in 2011: part I—calibration watershed through hydrological SMAP model," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 102(3), pages 1117-1134, July.
    2. Ayan Fleischmann & Walter Collischonn & Rodrigo Paiva & Carlos Eduardo Tucci, 2019. "Modeling the role of reservoirs versus floodplains on large-scale river hydrodynamics," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 99(2), pages 1075-1104, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kaddour Mehiriz & Pierre Gosselin, 2016. "Municipalities' Preparedness for Weather Hazards and Response to Weather Warnings," PLOS ONE, Public Library of Science, vol. 11(9), pages 1-17, September.
    2. Michels-Brito, Adriane & Rodriguez, Daniel Andrés & Cruz Junior, Wellington Luís & Nildo de Souza Vianna, João, 2021. "The climate change potential effects on the run-of-river plant and the environmental and economic dimensions of sustainability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    3. Conceição de M. M. de Oliveira & Lívia A. Alvarenga & Samuel Beskow & Zandra Almeida da Cunha & Marcelle Martins Vargas & Pâmela A. Melo & Javier Tomasella & Ana Carolina N. Santos & Vinicius S. O. Ca, 2023. "Hydrological Model Performance in the Verde River Basin, Minas Gerais, Brazil," Resources, MDPI, vol. 12(8), pages 1-13, July.
    4. Emmanuel Mavhura, 2020. "Learning from the tropical cyclones that ravaged Zimbabwe: policy implications for effective disaster preparedness," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 104(3), pages 2261-2275, December.
    5. João Paulo Lyra Fialho Brêda & Rodrigo Cauduro Dias Paiva & Walter Collischon & Juan Martín Bravo & Vinicius Alencar Siqueira & Elisa Bolzan Steinke, 2020. "Climate change impacts on South American water balance from a continental-scale hydrological model driven by CMIP5 projections," Climatic Change, Springer, vol. 159(4), pages 503-522, April.
    6. Julian D. Hunt & Walter Leal Filho, 2018. "Land, Water, and Wind Watershed Cycle: a strategic use of water, land and wind for climate change adaptation," Climatic Change, Springer, vol. 147(3), pages 427-439, April.
    7. Qinge Peng & Xingnian Liu & Er Huang & Kejun Yang, 2019. "Experimental study on the influence of vegetation on the slope flow concentration time," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 98(2), pages 751-763, September.
    8. Giovanni Dolif & Andre Engelbrecht & Alessandro Jatobá & Antônio da Silva & José Gomes & Marcos Borges & Carlos Nobre & Paulo Carvalho, 2013. "Resilience and brittleness in the ALERTA RIO system: a field study about the decision-making of forecasters," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 65(3), pages 1831-1847, February.
    9. Louise Fonseca Aguiar & Marcio Cataldi, 2021. "Social and environmental vulnerability in Southeast Brazil associated with the South Atlantic Convergence Zone," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 109(3), pages 2423-2437, December.
    10. Jaewon Jung & Sungeun Jung & Junhyeong Lee & Myungjin Lee & Hung Soo Kim, 2021. "Analysis of Small Hydropower Generation Potential: (2) Future Prospect of the Potential under Climate Change," Energies, MDPI, vol. 14(11), pages 1-26, May.
    11. Mohor, Guilherme Samprogna & Mendiondo, Eduardo Mario, 2017. "Economic indicators of hydrologic drought insurance under water demand and climate change scenarios in a Brazilian context," Ecological Economics, Elsevier, vol. 140(C), pages 66-78.
    12. Fernando Mainardi Fan & Dirk Schwanenberg & Rodolfo Alvarado & Alberto Assis dos Reis & Walter Collischonn & Steffi Naumman, 2016. "Performance of Deterministic and Probabilistic Hydrological Forecasts for the Short-Term Optimization of a Tropical Hydropower Reservoir," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(10), pages 3609-3625, August.
    13. Runqiu Huang & Jian Huang & Nengpan Ju & Chaoyang He & Weile Li, 2013. "WebGIS-based information management system for landslides triggered by Wenchuan earthquake," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 65(3), pages 1507-1517, February.
    14. Edmundo Wallace Monteiro Lucas & Fabrício Daniel dos Santos Silva & Francisco de Assis Salviano de Souza & David Duarte Cavalcante Pinto & Heliofábio Barros Gomes & Helber Barros Gomes & Mayara Christ, 2022. "Regionalization of Climate Change Simulations for the Assessment of Impacts on Precipitation, Flow Rate and Electricity Generation in the Xingu River Basin in the Brazilian Amazon," Energies, MDPI, vol. 15(20), pages 1-26, October.
    15. Rodnei Rizzo & Andrea S. Garcia & Vívian M. de F. N. Vilela & Maria Victoria R. Ballester & Christopher Neill & Daniel C. Victoria & Humberto R. Rocha & Michael T. Coe, 2020. "Land use changes in Southeastern Amazon and trends in rainfall and water yield of the Xingu River during 1976–2015," Climatic Change, Springer, vol. 162(3), pages 1419-1436, October.
    16. Jiafu Liu & Xinquan Wang & Bai Zhang & Jing Li & Jiquan Zhang & Xiaojing Liu, 2017. "Storm flood risk zoning in the typical regions of Asia using GIS technology," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 87(3), pages 1691-1707, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:88:y:2017:i:2:d:10.1007_s11069-017-2889-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.