IDEAS home Printed from https://ideas.repec.org/a/spr/climat/v129y2015i1p117-129.html
   My bibliography  Save this article

Impacts of future climatic and land cover changes on the hydrological regime of the Madeira River basin

Author

Listed:
  • J. Júnior
  • J. Tomasella
  • D. Rodriguez

Abstract

Brazilian strategic interest in the Madeira River basin, one of the most important of the southern Amazon tributaries, includes the development of hydropower to satisfy the country’s growing energy needs and new waterways to boost regional trade and economic development. Because of evidences that climate change impacts the hydrological regime of rivers, the aim of this study was to assess how global climate change and regional land cover change caused by deforestation could affect the river’s hydrological regime. To achieve this goal, we calibrated a large-scale hydrological model for the period from 1970–1990 and analyzed the ability of the model to simulate the present hydrological regime when climate model simulations were used as input. Climate change projections produced by climate models were used in the hydrological model to generate scenarios with and without regional land-use and land-cover changes induced by forest conversion to pasture for the period from 2011–2099. Although results show variability among models, consensus scenarios indicated a decrease in the low-flow regime. When the simulations included forest conversion to pasture, climate change impacts on low flows were reduced in the upper basin, while, in the lower basin, discharges were affected along the whole year due to the more vigorous land-use conversion in the Brazilian region of the basin. Copyright Springer Science+Business Media Dordrecht 2015

Suggested Citation

  • J. Júnior & J. Tomasella & D. Rodriguez, 2015. "Impacts of future climatic and land cover changes on the hydrological regime of the Madeira River basin," Climatic Change, Springer, vol. 129(1), pages 117-129, March.
  • Handle: RePEc:spr:climat:v:129:y:2015:i:1:p:117-129
    DOI: 10.1007/s10584-015-1338-x
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10584-015-1338-x
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10584-015-1338-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Michels-Brito, Adriane & Rodriguez, Daniel Andrés & Cruz Junior, Wellington Luís & Nildo de Souza Vianna, João, 2021. "The climate change potential effects on the run-of-river plant and the environmental and economic dimensions of sustainability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    2. Jaewon Jung & Sungeun Jung & Junhyeong Lee & Myungjin Lee & Hung Soo Kim, 2021. "Analysis of Small Hydropower Generation Potential: (2) Future Prospect of the Potential under Climate Change," Energies, MDPI, vol. 14(11), pages 1-26, May.
    3. Edmundo Wallace Monteiro Lucas & Fabrício Daniel dos Santos Silva & Francisco de Assis Salviano de Souza & David Duarte Cavalcante Pinto & Heliofábio Barros Gomes & Helber Barros Gomes & Mayara Christ, 2022. "Regionalization of Climate Change Simulations for the Assessment of Impacts on Precipitation, Flow Rate and Electricity Generation in the Xingu River Basin in the Brazilian Amazon," Energies, MDPI, vol. 15(20), pages 1-26, October.
    4. Rodnei Rizzo & Andrea S. Garcia & Vívian M. de F. N. Vilela & Maria Victoria R. Ballester & Christopher Neill & Daniel C. Victoria & Humberto R. Rocha & Michael T. Coe, 2020. "Land use changes in Southeastern Amazon and trends in rainfall and water yield of the Xingu River during 1976–2015," Climatic Change, Springer, vol. 162(3), pages 1419-1436, October.
    5. Mohor, Guilherme Samprogna & Mendiondo, Eduardo Mario, 2017. "Economic indicators of hydrologic drought insurance under water demand and climate change scenarios in a Brazilian context," Ecological Economics, Elsevier, vol. 140(C), pages 66-78.
    6. Conceição de M. M. de Oliveira & Lívia A. Alvarenga & Samuel Beskow & Zandra Almeida da Cunha & Marcelle Martins Vargas & Pâmela A. Melo & Javier Tomasella & Ana Carolina N. Santos & Vinicius S. O. Ca, 2023. "Hydrological Model Performance in the Verde River Basin, Minas Gerais, Brazil," Resources, MDPI, vol. 12(8), pages 1-13, July.
    7. Julian D. Hunt & Walter Leal Filho, 2018. "Land, Water, and Wind Watershed Cycle: a strategic use of water, land and wind for climate change adaptation," Climatic Change, Springer, vol. 147(3), pages 427-439, April.
    8. João Paulo Lyra Fialho Brêda & Rodrigo Cauduro Dias Paiva & Walter Collischon & Juan Martín Bravo & Vinicius Alencar Siqueira & Elisa Bolzan Steinke, 2020. "Climate change impacts on South American water balance from a continental-scale hydrological model driven by CMIP5 projections," Climatic Change, Springer, vol. 159(4), pages 503-522, April.
    9. Leandro Casagrande & Javier Tomasella & Regina Célia Santos Alvalá & Marcus Jorge Bottino & Rochane Oliveira Caram, 2017. "Early flood warning in the Itajaí-Açu River basin using numerical weather forecasting and hydrological modeling," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 88(2), pages 741-757, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:climat:v:129:y:2015:i:1:p:117-129. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.