IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v88y2017i1d10.1007_s11069-017-2873-8.html
   My bibliography  Save this article

Assessment of hydro-geomorphological hazard potentials in the Chilean semiarid coastal range and its impacts on La Serena city, Coquimbo Region

Author

Listed:
  • María Victoria Soto

    (University of Chile
    University of Chile)

  • Pablo Sarricolea

    (University of Chile)

  • Sergio Andres Sepúlveda

    (University of Chile
    University of Chile
    University of O´Higgins)

  • Giuliano Rodolfi

    (University of Florence)

  • Misael Cabello

    (University of Chile)

  • Michael Maerker

    (University of Pavia)

Abstract

Two micro-catchments, tributaries of the Elqui River in the coastal range of the semiarid central-northern Chile were analyzed to establish the hazard potentials associated with extreme rainfall and their effects on the urban area of La Serena city. Geomorphological mapping was performed identifying the morphological features associated with inherited and present-day processes, through photointerpretation and field work. To assess the geohazard potentials related to extreme precipitation events, a detailed terrain analysis was performed deriving topographic indices that in turn characterize the related process potentials. Extreme rainfall events were calculated with a decadal recurrence (>60 mm/day) and are subsequently associated with El Niño (ENSO) and Pacific Decadal Oscillation (PDO warm phase) events. We applied a simple storm flow model using a 20-year return period reflecting a disastrous flood event that affected the La Serena urban area in June 2011. The results highlight the spatial distribution of the hazard potentials in the two Elqui tributaries and their effects on the La Serena urban area. We show that areas subject to intensive land use change and urban sprawl associated with the lower marine terrace and river mouth of the Elqui River are of very high flooding and tsunami risk.

Suggested Citation

  • María Victoria Soto & Pablo Sarricolea & Sergio Andres Sepúlveda & Giuliano Rodolfi & Misael Cabello & Michael Maerker, 2017. "Assessment of hydro-geomorphological hazard potentials in the Chilean semiarid coastal range and its impacts on La Serena city, Coquimbo Region," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 88(1), pages 431-452, August.
  • Handle: RePEc:spr:nathaz:v:88:y:2017:i:1:d:10.1007_s11069-017-2873-8
    DOI: 10.1007/s11069-017-2873-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-017-2873-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-017-2873-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. J. Birkmann & O. Cardona & M. Carreño & A. Barbat & M. Pelling & S. Schneiderbauer & S. Kienberger & M. Keiler & D. Alexander & P. Zeil & T. Welle, 2013. "Framing vulnerability, risk and societal responses: the MOVE framework," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 67(2), pages 193-211, June.
    2. Christoph Aubrecht & Sven Fuchs & Clemens Neuhold, 2013. "Spatio-temporal aspects and dimensions in integrated disaster risk management," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 68(3), pages 1205-1216, September.
    3. James Banks & Janey Camp & Mark Abkowitz, 2014. "Adaptation planning for floods: a review of available tools," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 70(2), pages 1327-1337, January.
    4. Yongdeng Lei & Jing’ai Wang, 2014. "A preliminary discussion on the opportunities and challenges of linking climate change adaptation with disaster risk reduction," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 71(3), pages 1587-1597, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Christoph Aubrecht & Patrick Meier & Hannes Taubenböck, 2017. "Speeding up the clock in remote sensing: identifying the ‘black spots’ in exposure dynamics by capitalizing on the full spectrum of joint high spatial and temporal resolution," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 86(1), pages 177-182, March.
    2. C. Promper & T. Glade, 2016. "Multilayer-exposure maps as a basis for a regional vulnerability assessment for landslides: applied in Waidhofen/Ybbs, Austria," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 82(1), pages 111-127, May.
    3. Sven Fuchs & Thomas Glade, 2016. "Foreword: Vulnerability assessment in natural hazard risk—a dynamic perspective," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 82(1), pages 1-5, May.
    4. Jie Liu & Zhenwu Shi & Dan Wang, 2016. "Measuring and mapping the flood vulnerability based on land-use patterns: a case study of Beijing, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 83(3), pages 1545-1565, September.
    5. Gressel, Christie M. & Rashed, Tarek & Maciuika, Laura Aswati & Sheshadri, Srividya & Coley, Christopher & Kongeseri, Sreeram & Bhavani, Rao R, 2020. "Vulnerability mapping: A conceptual framework towards a context-based approach to women’s empowerment," World Development Perspectives, Elsevier, vol. 20(C).
    6. Abdur Rahim Hamidi & Jiangwei Wang & Shiyao Guo & Zhongping Zeng, 2020. "Flood vulnerability assessment using MOVE framework: a case study of the northern part of district Peshawar, Pakistan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 101(2), pages 385-408, March.
    7. Guy Jackson, 2020. "The influence of emergency food aid on the causal disaster vulnerability of Indigenous food systems," Agriculture and Human Values, Springer;The Agriculture, Food, & Human Values Society (AFHVS), vol. 37(3), pages 761-777, September.
    8. Deepal Doshi & Matthias Garschagen, 2020. "Understanding Adaptation Finance Allocation: Which Factors Enable or Constrain Vulnerable Countries to Access Funding?," Sustainability, MDPI, vol. 12(10), pages 1-18, May.
    9. Raoof Mostafazadeh & Amir Sadoddin & Abdolreza Bahremand & Vahed Berdi Sheikh & Arash Zare Garizi, 2017. "Scenario analysis of flood control structures using a multi-criteria decision-making technique in Northeast Iran," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 87(3), pages 1827-1846, July.
    10. Jorge Varanda & Luzia Gonçalves & Isabel Craveiro, 2020. "The Unlikely Saviour: Portugal’s National Health System and the Initial Impact of the COVID-19 Pandemic?," Development, Palgrave Macmillan;Society for International Deveopment, vol. 63(2), pages 291-297, December.
    11. Anna Ágústsdóttir, 2015. "Ecosystem approach for natural hazard mitigation of volcanic tephra in Iceland: building resilience and sustainability," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 78(3), pages 1669-1691, September.
    12. Qian Wang & Qi-peng Zhang & Yang-yang Liu & Lin-jing Tong & Yan-zhen Zhang & Xiao-yu Li & Jian-long Li, 2020. "Characterizing the spatial distribution of typical natural disaster vulnerability in China from 2010 to 2017," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 100(1), pages 3-15, January.
    13. Huicong Jia & Fang Chen & Enyu Du, 2021. "Adaptation to Disaster Risk—An Overview," IJERPH, MDPI, vol. 18(21), pages 1-21, October.
    14. Muhammad Irshad Ahmad & Hengyun Ma, 2020. "Climate Change and Livelihood Vulnerability in Mixed Crop–Livestock Areas: The Case of Province Punjab, Pakistan," Sustainability, MDPI, vol. 12(2), pages 1-31, January.
    15. Eleonora Giovene di Girasole & Daniele Cannatella, 2017. "Social Vulnerability to Natural Hazards in Urban Systems. An Application in Santo Domingo (Dominican Republic)," Sustainability, MDPI, vol. 9(11), pages 1-17, November.
    16. Sébastien Dujardin & Damien Jacques & Jessica Steele & Catherine Linard, 2020. "Mobile Phone Data for Urban Climate Change Adaptation: Reviewing Applications, Opportunities and Key Challenges," Sustainability, MDPI, vol. 12(4), pages 1-17, February.
    17. Yi Ge & Wen Dou & Jianping Dai, 2017. "A New Approach to Identify Social Vulnerability to Climate Change in the Yangtze River Delta," Sustainability, MDPI, vol. 9(12), pages 1-19, December.
    18. Jingjing Kong & Slobodan P. Simonovic, 2019. "Probabilistic Multiple Hazard Resilience Model of an Interdependent Infrastructure System," Risk Analysis, John Wiley & Sons, vol. 39(8), pages 1843-1863, August.
    19. Longxia Qian & Ren Zhang & Mei Hong & Hongrui Wang & Lizhi Yang, 2016. "A new multiple integral model for water shortage risk assessment and its application in Beijing, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 80(1), pages 43-67, January.
    20. Uttama Barua & Shahrin Mannan & Ishrat Islam & Mohammad Shakil Akther & Md. Aminul Islam & Tamanna Akter & Raquib Ahsan & Mehedy Ahmed Ansary, 2020. "People’s awareness, knowledge and perception influencing earthquake vulnerability of a community: A study on Ward no. 14, Mymensingh Municipality, Bangladesh," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 103(1), pages 1121-1181, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:88:y:2017:i:1:d:10.1007_s11069-017-2873-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.