IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v80y2016i1p487-503.html
   My bibliography  Save this article

Simulation of strong ground motion for 1905 Kangra earthquake and a possible megathrust earthquake (Mw 8.5) in western Himalaya (India) using Empirical Green’s Function technique

Author

Listed:
  • Babita Sharma
  • Sumer Chopra
  • Vikas Kumar

Abstract

Earthquakes are deadliest among all the natural disasters. The areas that have experienced great/large earthquakes in the past may experience big event in future. In this study, we have simulated Kangra earthquake (1905, Mw 7.8) and a hypothetical great earthquake (Mw 8.5) in the north-west Himalaya using Empirical Green’s Function (EGF) technique. Recordings of Dharamsala earthquake (1986, Mw 5.4) are used as Green function with a heterogeneous source model and an asperity. It has been observed that the towns of Kangra and Dharamsala can expect ground accelerations in excess of 1 g in case of a Mw 8.5 earthquake and could have experienced an acceleration close to 1 g during 1905 Kangra earthquake. The entire study region can expect acceleration in excess of 100 cm/s 2 in case of Mw 7.8 and 200 cm/s 2 in case of Mw 8.5. The sites located near the rupture initiation point can expect accelerations in excess of 1 g for the magnitudes simulated. For validation, the estimates of the PGA for Mw 7.8 simulation are compared with isoseismal studies carried out in the same region after the Kangra earthquake of 1905 by converting PGA values to intensities. It was found that the results are comparable. The target earthquakes (Mw 7.8 and Mw 8.5) are simulated at depth of 20 km and 30 km to examine the effect of PGA for different depths. The PGA values obtained in the present analysis gave us an idea about the level of accelerations experienced in the area during 1905 Kangra earthquake. Future construction in the area can be regulated, and built environ can be strengthened using PGA values obtained in the present analysis. Copyright Springer Science+Business Media Dordrecht 2016

Suggested Citation

  • Babita Sharma & Sumer Chopra & Vikas Kumar, 2016. "Simulation of strong ground motion for 1905 Kangra earthquake and a possible megathrust earthquake (Mw 8.5) in western Himalaya (India) using Empirical Green’s Function technique," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 80(1), pages 487-503, January.
  • Handle: RePEc:spr:nathaz:v:80:y:2016:i:1:p:487-503
    DOI: 10.1007/s11069-015-1979-0
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11069-015-1979-0
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11069-015-1979-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sanjay Prajapati & Ashok Kumar & Sumer Chopra & B. Bansal, 2013. "Intensity map of Mw 6.9 2011 Sikkim–Nepal border earthquake and its relationships with PGA: distance and magnitude," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 69(3), pages 1781-1801, December.
    2. Basab Mukhopadhyay & Anshuman Acharyya & Sujit Dasgupta, 2011. "Potential source zones for Himalayan earthquakes: constraints from spatial–temporal clusters," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 57(2), pages 369-383, May.
    3. A. Mahajan & V. Thakur & Mukat Sharma & Mukesh Chauhan, 2010. "Probabilistic seismic hazard map of NW Himalaya and its adjoining area, India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 53(3), pages 443-457, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. H. Mandal & P. Khan & A. Shukla, 2014. "Soil responses near Delhi ridge and adjacent regions in Greater Delhi during incidence of a local earthquake," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 70(1), pages 93-118, January.
    2. P. Anbazhagan & Ketan Bajaj & Satyajit Patel, 2015. "Seismic hazard maps and spectrum for Patna considering region-specific seismotectonic parameters," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 78(2), pages 1163-1195, September.
    3. A. Vanuvamalai & K. P. Jaya & V. Balachandran, 2018. "Seismic performance of tunnel structures: a case study," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 93(1), pages 453-468, August.
    4. Abhishek Kumar & P. Anbazhagan & T. Sitharam, 2013. "Seismic hazard analysis of Lucknow considering local and active seismic gaps," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 69(1), pages 327-350, October.
    5. Sukanta Malakar & Abhishek K. Rai & Arun K. Gupta, 2023. "Earthquake risk mapping in the Himalayas by integrated analytical hierarchy process, entropy with neural network," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(1), pages 951-975, March.
    6. Ramees R. Mir & Imtiyaz A. Parvez, 2020. "Ground motion modelling in northwestern Himalaya using stochastic finite-fault method," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 103(2), pages 1989-2007, September.
    7. Hemchandra Chaulagain & Hugo Rodrigues & Vitor Silva & Enrico Spacone & Humberto Varum, 2015. "Seismic risk assessment and hazard mapping in Nepal," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 78(1), pages 583-602, August.
    8. Madan Mohan Rout & Josodhir Das & Kamal, 2018. "Probabilistic seismic hazard for Himalayan region using kernel estimation method (zone-free method)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 93(2), pages 967-985, September.
    9. Noureen Ali & Akhtar Alam & M. Sultan Bhat & Bilquis Shah, 2022. "Using historical data for developing a hazard and disaster profile of the Kashmir valley for the period 1900–2020," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 114(2), pages 1609-1646, November.
    10. Chhavi Choudhary & Mukat Lal Sharma, 2018. "Global strain rates in western to central Himalayas and their implications in seismic hazard assessment," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 94(3), pages 1211-1224, December.
    11. Singh Mridula & Amita Sinvhal & Hans Raj Wason & Swati Singh Rajput, 2016. "Segmentation of Main Boundary Thrust and Main Central Thrust in Western Himalaya for assessment of seismic hazard," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 84(1), pages 383-403, October.
    12. Anil Tiwari & Ajay Paul & Rakesh Singh & Rajeev Upadhyay, 2021. "Potential seismogenic asperities in the Garhwal–Kumaun region, NW Himalaya: seismotectonic implications," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 107(1), pages 73-95, May.
    13. G. Joshi & M. Sharma, 2011. "Strong ground-motion prediction and uncertainties estimation for Delhi, India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 59(2), pages 617-637, November.
    14. Abhishek Kumar & N. H. Harinarayan & Olympa Baro, 2017. "Nonlinear soil response to ground motions during different earthquakes in Nepal, to arrive at surface response spectra," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 87(1), pages 13-33, May.
    15. Asim Bashir & Dhiman Basu, 2018. "Revisiting probabilistic seismic hazard analysis of Gujarat: an assessment of Indian design spectra," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 91(3), pages 1127-1164, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:80:y:2016:i:1:p:487-503. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.