IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v94y2018i3d10.1007_s11069-018-3467-9.html
   My bibliography  Save this article

Global strain rates in western to central Himalayas and their implications in seismic hazard assessment

Author

Listed:
  • Chhavi Choudhary

    (Indian Institute of Technology Roorkee)

  • Mukat Lal Sharma

    (Indian Institute of Technology Roorkee)

Abstract

The Himalayas has experienced varying rates of earthquake occurrence in the past in its seismo-tectonically distinguished segments which may be attributed to different physical processes of accumulation of stress and its release, and due diligence is required for its inclusion for working out the seismic hazard. The present paper intends to revisit the various earthquake occurrence models applied to Himalayas and examines it in the light of recent damaging earthquakes in Himalayan belt. Due to discordant seismicity of Himalayas, three types of regions have been considered to estimate larger return period events. The regions selected are (1) the North-West Himalayan Fold and Thrust Belt which is seismically very active, (2) the Garhwal Himalaya which has never experienced large earthquake although sufficient stress exists and (3) the Nepal region which is very seismically active region due to unlocked rupture and frequently experienced large earthquake events. The seismicity parameters have been revisited using two earthquake recurrence models namely constant seismicity and constant moment release. For constant moment release model, the strain rates have been derived from global strain rate model and are converted into seismic moment of earthquake events considering the geometry of the finite source and the rates being consumed fully by the contemporary seismicity. Probability of earthquake occurrence with time has been estimated for each region using both models and compared assuming Poissonian distribution. The results show that seismicity for North-West region is observed to be relatively less when estimated using constant seismicity model which implies that either the occupied accumulated stress is not being unconfined in the form of earthquakes or the compiled earthquake catalogue is insufficient. Similar trend has been observed for seismic gap area but with lesser difference reported from both methods. However, for the Nepal region, the estimated seismicity by the two methods has been found to be relatively less when estimated using constant moment release model which implies that in the Nepal region, accumulated strain is releasing in the form of large earthquake occurrence event. The partial release in second event of May 2015 of similar size shows that the physical process is trying to release the energy with large earthquake event. If it would have been in other regions like that of seismic gap region, the fault may not have released the energy and may be inviting even bigger event in future. It is, therefore, necessary to look into the seismicity from strain rates also for its due interpretation in terms of predicting the seismic hazard in various segments of Himalayas.

Suggested Citation

  • Chhavi Choudhary & Mukat Lal Sharma, 2018. "Global strain rates in western to central Himalayas and their implications in seismic hazard assessment," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 94(3), pages 1211-1224, December.
  • Handle: RePEc:spr:nathaz:v:94:y:2018:i:3:d:10.1007_s11069-018-3467-9
    DOI: 10.1007/s11069-018-3467-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-018-3467-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-018-3467-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Roger Bilham & Kristine Larson & Jeffrey Freymueller, 1997. "GPS measurements of present-day convergence across the Nepal Himalaya," Nature, Nature, vol. 386(6620), pages 61-64, March.
    2. A. Mahajan & V. Thakur & Mukat Sharma & Mukesh Chauhan, 2010. "Probabilistic seismic hazard map of NW Himalaya and its adjoining area, India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 53(3), pages 443-457, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dal Zilio, Luca & Jolivet, Romain & van Dinther, Ylona, 2019. "Segmentation of the Main Himalayan Thrust inferred from geodetic observations of interseismic coupling," Earth Arxiv tkjef, Center for Open Science.
    2. Abhishek Kumar & P. Anbazhagan & T. Sitharam, 2013. "Seismic hazard analysis of Lucknow considering local and active seismic gaps," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 69(1), pages 327-350, October.
    3. Sukanta Malakar & Abhishek K. Rai & Arun K. Gupta, 2023. "Earthquake risk mapping in the Himalayas by integrated analytical hierarchy process, entropy with neural network," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(1), pages 951-975, March.
    4. Ramees R. Mir & Imtiyaz A. Parvez, 2020. "Ground motion modelling in northwestern Himalaya using stochastic finite-fault method," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 103(2), pages 1989-2007, September.
    5. Hemchandra Chaulagain & Hugo Rodrigues & Vitor Silva & Enrico Spacone & Humberto Varum, 2015. "Seismic risk assessment and hazard mapping in Nepal," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 78(1), pages 583-602, August.
    6. A. A. Shah & Javed N. Malik, 2017. "Four major unknown active faults identified, using satellite data, in India and Pakistan portions of NW Himalaya," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 88(3), pages 1845-1865, September.
    7. A. A. Shah & S. M. Talha Qadri, 2017. "Segmentation of Main Boundary Thrust and Main Central Thrust in Western Himalaya for assessment of seismic hazard by Mridula et al., Nat Hazards (2016) 84: 383–403," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 87(2), pages 1245-1249, June.
    8. Madan Mohan Rout & Josodhir Das & Kamal, 2018. "Probabilistic seismic hazard for Himalayan region using kernel estimation method (zone-free method)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 93(2), pages 967-985, September.
    9. Singh Mridula & Amita Sinvhal & Hans Raj Wason & Swati Singh Rajput, 2016. "Segmentation of Main Boundary Thrust and Main Central Thrust in Western Himalaya for assessment of seismic hazard," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 84(1), pages 383-403, October.
    10. Asim Bashir & Dhiman Basu, 2018. "Revisiting probabilistic seismic hazard analysis of Gujarat: an assessment of Indian design spectra," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 91(3), pages 1127-1164, April.
    11. Amod Dixit & Ryuichi Yatabe & Ranjan Dahal & Netra Bhandary, 2013. "Initiatives for earthquake disaster risk management in the Kathmandu Valley," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 69(1), pages 631-654, October.
    12. H. Mandal & P. Khan & A. Shukla, 2014. "Soil responses near Delhi ridge and adjacent regions in Greater Delhi during incidence of a local earthquake," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 70(1), pages 93-118, January.
    13. P. Anbazhagan & Ketan Bajaj & Satyajit Patel, 2015. "Seismic hazard maps and spectrum for Patna considering region-specific seismotectonic parameters," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 78(2), pages 1163-1195, September.
    14. D. Khandelwal & Vineet Gahalaut & Naresh Kumar & Bhaskar Kundu & Rajeev Yadav, 2014. "Seasonal variation in the deformation rate in NW Himalayan region," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 74(3), pages 1853-1861, December.
    15. S. Mondal & Alessandra Borghi & P. Roy & Abdelkrim Aoudia, 2016. "GPS, scaling exponent and past seismicity for seismic hazard assessment in Garhwal–Kumaun, Himalayan region," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 80(2), pages 1349-1367, January.
    16. P. Chingtham & S. Chopra & I. Baskoutas & B. Bansal, 2014. "An assessment of seismicity parameters in northwest Himalaya and adjoining regions," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 71(3), pages 1599-1616, April.
    17. Kaur, Sehajnoor & Yadav, Jairam Singh & Bhambri, Rakesh & Sain, Kalachand & Tiwari, Sameer K., 2023. "Assessment of geothermal potential of Kumaun Himalaya: A perspective for harnessing green energy," Renewable Energy, Elsevier, vol. 212(C), pages 940-952.
    18. Noureen Ali & Akhtar Alam & M. Sultan Bhat & Bilquis Shah, 2022. "Using historical data for developing a hazard and disaster profile of the Kashmir valley for the period 1900–2020," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 114(2), pages 1609-1646, November.
    19. A. Mahajan & V. Thakur & Mukat Sharma & Mukesh Chauhan, 2010. "Probabilistic seismic hazard map of NW Himalaya and its adjoining area, India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 53(3), pages 443-457, June.
    20. Max Wyss, 2017. "Four loss estimates for the Gorkha M7.8 earthquake, April 25, 2015, before and after it occurred," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 86(1), pages 141-150, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:94:y:2018:i:3:d:10.1007_s11069-018-3467-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.