IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v53y2010i3p443-457.html
   My bibliography  Save this article

Probabilistic seismic hazard map of NW Himalaya and its adjoining area, India

Author

Listed:
  • A. Mahajan
  • V. Thakur
  • Mukat Sharma
  • Mukesh Chauhan

Abstract

The seismically active Northwest (NW) Himalaya falls within Seismic Zone IV and V of the hazard zonation map of India. The region has suffered several moderate (~25), large-to-great earthquakes (~4) since Assam earthquake of 1897. In view of the major advancement made in understanding the seismicity and seismotectonics of this region during the last two decades, an updated probabilistic seismic hazard map of NW Himalaya and its adjoining areas covering 28–34°N and 74–82°E is prepared. The northwest Himalaya and its adjoining area is divided into nineteen different seismogenic source zones; and two different region-specific attenuation relationships have been used for seismic hazard assessment. The peak ground acceleration (PGA) estimated for 10% probability of exceedance in 50 and 10 years at locations defined in the grid of 0.25 × 0.25°. The computed seismic hazard map reveals longitudinal variation in hazard level along the NW Himalayan arc. The high hazard potential zones are centred around Kashmir region (0.70 g/0.35 g), Kangra region (0.50 g/0.020 g), Kaurik-Spitti region (0.45 g/0.20 g), Garhwal region (0.50 g/0.20 g) and Darchula region (0.50 g/0.20 g) with intervening low hazard area of the order of 0.25 g/0.02 g for 10% probability in 50 and 10 years in each region respectively. Copyright Springer Science+Business Media B.V. 2010

Suggested Citation

  • A. Mahajan & V. Thakur & Mukat Sharma & Mukesh Chauhan, 2010. "Probabilistic seismic hazard map of NW Himalaya and its adjoining area, India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 53(3), pages 443-457, June.
  • Handle: RePEc:spr:nathaz:v:53:y:2010:i:3:p:443-457
    DOI: 10.1007/s11069-009-9439-3
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11069-009-9439-3
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11069-009-9439-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Roger Bilham & Kristine Larson & Jeffrey Freymueller, 1997. "GPS measurements of present-day convergence across the Nepal Himalaya," Nature, Nature, vol. 386(6620), pages 61-64, March.
    2. Nicole Feldl & Roger Bilham, 2006. "Great Himalayan earthquakes and the Tibetan plateau," Nature, Nature, vol. 444(7116), pages 165-170, November.
    3. Vera Schulte-Pelkum & Gaspar Monsalve & Anne Sheehan & M. R. Pandey & Som Sapkota & Roger Bilham & Francis Wu, 2005. "Imaging the Indian subcontinent beneath the Himalaya," Nature, Nature, vol. 435(7046), pages 1222-1225, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. H. Mandal & P. Khan & A. Shukla, 2014. "Soil responses near Delhi ridge and adjacent regions in Greater Delhi during incidence of a local earthquake," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 70(1), pages 93-118, January.
    2. P. Anbazhagan & Ketan Bajaj & Satyajit Patel, 2015. "Seismic hazard maps and spectrum for Patna considering region-specific seismotectonic parameters," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 78(2), pages 1163-1195, September.
    3. G. Joshi & M. Sharma, 2011. "Strong ground-motion prediction and uncertainties estimation for Delhi, India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 59(2), pages 617-637, November.
    4. Sukanta Malakar & Abhishek K. Rai & Arun K. Gupta, 2023. "Earthquake risk mapping in the Himalayas by integrated analytical hierarchy process, entropy with neural network," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(1), pages 951-975, March.
    5. Babita Sharma & Sumer Chopra & Vikas Kumar, 2016. "Simulation of strong ground motion for 1905 Kangra earthquake and a possible megathrust earthquake (Mw 8.5) in western Himalaya (India) using Empirical Green’s Function technique," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 80(1), pages 487-503, January.
    6. Asim Bashir & Dhiman Basu, 2018. "Revisiting probabilistic seismic hazard analysis of Gujarat: an assessment of Indian design spectra," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 91(3), pages 1127-1164, April.
    7. Ramees R. Mir & Imtiyaz A. Parvez, 2020. "Ground motion modelling in northwestern Himalaya using stochastic finite-fault method," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 103(2), pages 1989-2007, September.
    8. Madan Mohan Rout & Josodhir Das & Kamal, 2018. "Probabilistic seismic hazard for Himalayan region using kernel estimation method (zone-free method)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 93(2), pages 967-985, September.
    9. Abhishek Kumar & P. Anbazhagan & T. Sitharam, 2013. "Seismic hazard analysis of Lucknow considering local and active seismic gaps," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 69(1), pages 327-350, October.
    10. Hemchandra Chaulagain & Hugo Rodrigues & Vitor Silva & Enrico Spacone & Humberto Varum, 2015. "Seismic risk assessment and hazard mapping in Nepal," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 78(1), pages 583-602, August.
    11. Noureen Ali & Akhtar Alam & M. Sultan Bhat & Bilquis Shah, 2022. "Using historical data for developing a hazard and disaster profile of the Kashmir valley for the period 1900–2020," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 114(2), pages 1609-1646, November.
    12. Chhavi Choudhary & Mukat Lal Sharma, 2018. "Global strain rates in western to central Himalayas and their implications in seismic hazard assessment," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 94(3), pages 1211-1224, December.
    13. Singh Mridula & Amita Sinvhal & Hans Raj Wason & Swati Singh Rajput, 2016. "Segmentation of Main Boundary Thrust and Main Central Thrust in Western Himalaya for assessment of seismic hazard," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 84(1), pages 383-403, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. A. Vanuvamalai & K. P. Jaya & V. Balachandran, 2018. "Seismic performance of tunnel structures: a case study," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 93(1), pages 453-468, August.
    2. Dal Zilio, Luca & Jolivet, Romain & van Dinther, Ylona, 2019. "Segmentation of the Main Himalayan Thrust inferred from geodetic observations of interseismic coupling," Earth Arxiv tkjef, Center for Open Science.
    3. A. A. Shah & Javed N. Malik, 2017. "Four major unknown active faults identified, using satellite data, in India and Pakistan portions of NW Himalaya," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 88(3), pages 1845-1865, September.
    4. A. A. Shah & S. M. Talha Qadri, 2017. "Segmentation of Main Boundary Thrust and Main Central Thrust in Western Himalaya for assessment of seismic hazard by Mridula et al., Nat Hazards (2016) 84: 383–403," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 87(2), pages 1245-1249, June.
    5. Chhavi Choudhary & Mukat Lal Sharma, 2018. "Global strain rates in western to central Himalayas and their implications in seismic hazard assessment," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 94(3), pages 1211-1224, December.
    6. Basab Mukhopadhyay & Anshuman Acharyya & Sujit Dasgupta, 2011. "Potential source zones for Himalayan earthquakes: constraints from spatial–temporal clusters," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 57(2), pages 369-383, May.
    7. Tom R. Robinson, 2020. "Scenario ensemble modelling of possible future earthquake impacts in Bhutan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 103(3), pages 3457-3478, September.
    8. Amod Dixit & Ryuichi Yatabe & Ranjan Dahal & Netra Bhandary, 2013. "Initiatives for earthquake disaster risk management in the Kathmandu Valley," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 69(1), pages 631-654, October.
    9. D. Khandelwal & Vineet Gahalaut & Naresh Kumar & Bhaskar Kundu & Rajeev Yadav, 2014. "Seasonal variation in the deformation rate in NW Himalayan region," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 74(3), pages 1853-1861, December.
    10. S. Mondal & Alessandra Borghi & P. Roy & Abdelkrim Aoudia, 2016. "GPS, scaling exponent and past seismicity for seismic hazard assessment in Garhwal–Kumaun, Himalayan region," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 80(2), pages 1349-1367, January.
    11. Prantik Mandal & D. Srinagesh & R. Vijayaraghavan & G. Suresh & B. Naresh & P. Solomon Raju & Aarti Devi & K. Swathi & Dhiraj K. Singh & D. Srinivas & Satish Saha & M. Shekar & A. N. S. Sarma & YVVBSN, 2022. "Seismic velocity imaging of the Kumaon–Garhwal Himalaya, India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 111(3), pages 2241-2260, April.
    12. P. Chingtham & S. Chopra & I. Baskoutas & B. Bansal, 2014. "An assessment of seismicity parameters in northwest Himalaya and adjoining regions," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 71(3), pages 1599-1616, April.
    13. Kaur, Sehajnoor & Yadav, Jairam Singh & Bhambri, Rakesh & Sain, Kalachand & Tiwari, Sameer K., 2023. "Assessment of geothermal potential of Kumaun Himalaya: A perspective for harnessing green energy," Renewable Energy, Elsevier, vol. 212(C), pages 940-952.
    14. Max Wyss, 2017. "Four loss estimates for the Gorkha M7.8 earthquake, April 25, 2015, before and after it occurred," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 86(1), pages 141-150, March.
    15. Anjali Sharma & Renu Yadav & Dinesh Kumar & Ajay Paul & S. S. Teotia, 2021. "Estimation of site response functions for the central seismic gap of Himalaya, India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 109(2), pages 1899-1933, November.
    16. Atanu Bhattacharya & Mukat Sharma & Manoj Arora, 2012. "Surface displacement estimation along Himalayan frontal fault using differential SAR interferometry," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 64(2), pages 1105-1123, November.
    17. S. K. Mondal & Alessandra Borghi & P. N. S. Roy & Abdelkrim Aoudia, 2016. "GPS, scaling exponent and past seismicity for seismic hazard assessment in Garhwal–Kumaun, Himalayan region," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 80(2), pages 1349-1367, January.
    18. Tara Nidhi Bhattarai & Takasi Nagao & Tara Nidhi Lohani, 2020. "State of Seismic Hazard Analysis: Reviewing the Needs after Mw 7.8 Gorkha, Nepal Earthquake," Journal of Development Innovations, KarmaQuest International, vol. 4(1), pages 48-63, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:53:y:2010:i:3:p:443-457. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.