IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v87y2017i1d10.1007_s11069-017-2751-4.html
   My bibliography  Save this article

Nonlinear soil response to ground motions during different earthquakes in Nepal, to arrive at surface response spectra

Author

Listed:
  • Abhishek Kumar

    (Indian Institute of Technology Guwahati)

  • N. H. Harinarayan

    (Indian Institute of Technology Guwahati)

  • Olympa Baro

    (Indian Institute of Technology Guwahati)

Abstract

Catastrophic damages reported during an earthquake include building damages, excessive ground shaking, uneven settlements and liquefaction. While most of the seismic hazard studies map the probable level of ground shaking at the bedrock level, their use in assessing the above damages is very limited until the response of the local soil is also taken into account. Determination of the local soil response needs regionally recorded ground motions, dynamic soil properties, in situ geotechnical details, etc., which most of the time are not readily available for the region under study. In the present work, the response of local soil for Nepal has been studied indirectly taking into account the surface level of ground shaking during various past as well as recent EQs observed at various locations. Based on the present analysis, a low value of amplification factor for high peak horizontal acceleration and vice versa is observed in central, western as well as southern parts of Nepal. These observations suggest nonlinear soil behavior and are in accordance with the available literature. Further, the ground motion records during 2015 Nepal EQ show maximum soil response at 0.3 s which is exactly matching with the site class C obtained from in situ data for the above locations. Based on the above observations, various correlations between the high peak horizontal acceleration and the surface spectral acceleration are proposed to obtained site specific surface response spectrum for Nepal.

Suggested Citation

  • Abhishek Kumar & N. H. Harinarayan & Olympa Baro, 2017. "Nonlinear soil response to ground motions during different earthquakes in Nepal, to arrive at surface response spectra," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 87(1), pages 13-33, May.
  • Handle: RePEc:spr:nathaz:v:87:y:2017:i:1:d:10.1007_s11069-017-2751-4
    DOI: 10.1007/s11069-017-2751-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-017-2751-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-017-2751-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. T. Sitharam & P. Anbazhagan, 2007. "Seismic Hazard Analysis for the Bangalore Region," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 40(2), pages 261-278, February.
    2. Sarika Desai & Deepankar Choudhury, 2014. "Spatial variation of probabilistic seismic hazard for Mumbai and surrounding region," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 71(3), pages 1873-1898, April.
    3. Abhishek Kumar & Olympa Baro & N. H. Harinarayan, 2016. "Erratum to: Obtaining the surface PGA from site response analyses based on globally recorded ground motions and matching with the codal values," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 83(1), pages 767-768, August.
    4. Abhishek Kumar & Olympa Baro & N. H. Harinarayan, 2016. "Obtaining the surface PGA from site response analyses based on globally recorded ground motions and matching with the codal values," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(1), pages 543-572, March.
    5. Abhishek Kumar & Olympa Baro & N. H. Harinarayan, 2016. "Obtaining the surface PGA from site response analyses based on globally recorded ground motions and matching with the codal values," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(1), pages 543-572, March.
    6. Sanjay Prajapati & Ashok Kumar & Sumer Chopra & B. Bansal, 2013. "Intensity map of Mw 6.9 2011 Sikkim–Nepal border earthquake and its relationships with PGA: distance and magnitude," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 69(3), pages 1781-1801, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ali Silahtar, 2023. "Evaluation of local soil conditions with 1D nonlinear site response analysis of Arifiye (Sakarya District), Turkey," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(1), pages 727-751, March.
    2. P. Anbazhagan & Mohammad Rafiq Joo & Meer Mehran Rashid & Nassir S. N. Al-Arifi, 2021. "Prediction of different depth amplifications of deep soil sites for potential scenario earthquakes," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 107(2), pages 1935-1963, June.
    3. Reshma Raskar Phule & Deepankar Choudhury, 2017. "Seismic reliability-based analysis and GIS mapping of cyclic mobility of clayey soils of Mumbai city, India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 85(1), pages 139-169, January.
    4. Abhishek Kumar & Olympa Baro & N. H. Harinarayan, 2016. "Obtaining the surface PGA from site response analyses based on globally recorded ground motions and matching with the codal values," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(1), pages 543-572, March.
    5. T. Sitharam & K. Vipin, 2011. "Evaluation of spatial variation of peak horizontal acceleration and spectral acceleration for south India: a probabilistic approach," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 59(2), pages 639-653, November.
    6. G. Surve & Jyotima Kanaujia & Nitin Sharma, 2021. "Probabilistic seismic hazard assessment studies for Mumbai region," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 107(1), pages 575-600, May.
    7. P. Anbazhagan & J. Vinod & T. Sitharam, 2009. "Probabilistic seismic hazard analysis for Bangalore," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 48(2), pages 145-166, February.
    8. Abhishek Kumar & Olympa Baro & N. H. Harinarayan, 2016. "Obtaining the surface PGA from site response analyses based on globally recorded ground motions and matching with the codal values," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(1), pages 543-572, March.
    9. Y. Bulent Sonmezer & Ilker Kalkan & Selcuk Bas & S. Oguzhan Akbas, 2018. "Effects of the use of the surface spectrum of a specific region on seismic performances of R/C structures," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 93(3), pages 1203-1229, September.
    10. Kaustav Chatterjee & Deepankar Choudhury, 2013. "Variations in shear wave velocity and soil site class in Kolkata city using regression and sensitivity analysis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 69(3), pages 2057-2082, December.
    11. Mithila Verma & R. Singh & B. Bansal, 2014. "Soft sediments and damage pattern: a few case studies from large Indian earthquakes vis-a-vis seismic risk evaluation," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 74(3), pages 1829-1851, December.
    12. Priyanka Ghosh & Rajusha Kumari, 2012. "Seismic interference of two nearby horizontal strip anchors in layered soil," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 63(2), pages 789-804, September.
    13. Asim Bashir & Dhiman Basu, 2018. "Revisiting probabilistic seismic hazard analysis of Gujarat: an assessment of Indian design spectra," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 91(3), pages 1127-1164, April.
    14. Sumedh Mhaske & Deepankar Choudhury, 2011. "Geospatial contour mapping of shear wave velocity for Mumbai city," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 59(1), pages 317-327, October.
    15. Sarika Desai & Deepankar Choudhury, 2014. "Spatial variation of probabilistic seismic hazard for Mumbai and surrounding region," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 71(3), pages 1873-1898, April.
    16. Swathi Priyadarsini Putti & Neelima Satyam Devarakonda & Ikuo Towhata, 2019. "Estimation of ground response and local site effects for Vishakhapatnam, India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 97(2), pages 555-578, June.
    17. S. Trupti & K. Goverdhan & K. Srinivas & P. Prabhakar Prasad & T. Seshunarayana, 2013. "Site classification of Pondicherry using shear-wave velocity and horizontal-to-vertical spectral ratio," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 69(1), pages 953-964, October.
    18. K. Vipin & T. Sitharam & P. Anbazhagan, 2010. "Probabilistic evaluation of seismic soil liquefaction potential based on SPT data," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 53(3), pages 547-560, June.
    19. S. Elayaraja & S. Chandrasekaran & G. Ganapathy, 2015. "Evaluation of seismic hazard and potential of earthquake-induced landslides of the Nilgiris, India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 78(3), pages 1997-2015, September.
    20. Mehmet Alpyürür & Musaffa Ayşen Lav, 2022. "An assessment of probabilistic seismic hazard for the cities in Southwest Turkey using historical and instrumental earthquake catalogs," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 114(1), pages 335-365, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:87:y:2017:i:1:d:10.1007_s11069-017-2751-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.